Direct Decomposition of NO on Cu-Doped La(Ba)Mn(In)O₃ Perovskite Oxide under Coexistence of O₂, H₂O, and SO₂

Tatsumi Ishihara,[†] Kazuhiro Anami, Keiko Takiishi, Hiroshi Yamada,^{††} Hiroyasu Nishiguchi, and Yusaku Takita

Department of Applied Chemistry, Faculty of Engineering, Oita University, Dannoharu 700, Oita 870-1192

[†]Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581

^{††}Graduate School of Engineering, Oita University, Dannoharu 700, Oita 870-1192

(Received September 9, 2003; CL-030838)

It was found that the substitution of Mn with Cu in $La_{0.7}Ba_{0.3}Mn_{0.8}In_{0.2}O_3$ is effective for increasing activity to NO direct decomposition. NO direct decomposition proceeds on the perovskite oxide of $La_{0.7}Ba_{0.3}Mn_{0.6}In_{0.2}Cu_{0.2}O_3$ under coexistence of O_2 , H_2O , and SO_2 at high temperature.

Nitrogen oxides (NO_x) , which are mainly formed by an internal combustion engine, are extremely toxic for human body and harmful for environment as a main source of acid rain. At present, several methods have been proposed for NO_x removal.¹⁻⁴ Among them, direct decomposition of NO to N_2 and O_2 $(2NO = N_2 + O_2)$ is the most ideal method for the NO removal, since the process is simple and of high efficiency. However, it is well-known that the formed oxygen adsorbs strongly on the catalyst resulting in a deactivation of catalyst. It was reported that Cu-ZSM-5,⁵ LaNiO₃,⁶ and Sr/La₂O₃-based perovskite oxide⁷ are active for the direct decomposition of NO. In particular, Teraoka et al. reported that La_{0.8}Sr_{0.2}CoO₃ is highly active for the NO decomposition.⁸ The high activity for NO decomposition under a practical exhaust gas condition is expected on perovskite oxide catalyst. In our previous study, it was found that La_{0.7}Ba_{0.3}Mn_{0.8}In_{0.2}O₃ (LBMI) perovskite oxide exhibits the high activity to NO direct decomposition.⁹ In the present study, effects of transition cation substitution for Mn in LBMI were studied for further increasing the NO decomposition activity. In particular, effects of coexistence of H₂O, O₂, and SO₂, which are generally contained in exhaust gas from internal combustion engines, on NO decomposition were also studied.

Doped LaMnO₃ was prepared by a conventional solid solution method. The precursor of LaMnO3-based perovskite oxide was obtained by using the aqueous suspension of a calculated amount of $La(NO_3)_3$, $Ba(NO_3)_2$, $Mn(CH_3COO)_2$, In_2O_3 , and metal nitrate. Obtained mixtures were calcined in air at 1273 K for 3 h. From X-ray diffraction measurement, it was confirmed that the obtained sample was consisted of a single phase of LaMnO₃-based perovskite oxide. Direct decomposition of NO was performed with a conventional fixed bed gas flow reactor and a gaseous mixture of 1% NO diluted with He was fed to the catalyst bed at $W/F = 3.0 \text{ g} \cdot \text{min/cm}^3$, where W and F mean the catalyst weight and the gas flow rate. Here, for the accelerated deactivation by oxygen formed in NO decomposition, we generally used the concentration of NO at 1%, which is much higher than that in the actual exhaust gas. Produced N₂, O₂, and fed NO were analyzed with an on-lined gas chromatography with thermal conductivity detector (TCD). Formation rate of NO2 was estimated by N2 and O2 material balance. Addition of H₂O was performed by using micro pump and fed H₂O was evaporated at the ahead of reactor.

Table 1 summarized the NO decomposition activity on $La_{0.7}Ba_{0.3}Mn_{0.8}In_{0.1}M_{0.1}O_3$ (M = Ti,Cr,V,Ni,Co,Fe, or Cu) at 1073 K. Since no additional phase was observed on XRD patterns in all doped LBMI oxides and shift in diffraction angle of peaks was also observed, doped metal cation is considered to substitute the lattice position of Mn in LaMnO₃ oxide. It is seen that N₂ or O₂ yield was strongly affected by the dopant for Mn. Activity to NO decomposition on LBMI greatly decreased by doping Ti, Cr, and V. On the other hand, it is seen that N₂ yield greatly improved by doping Fe, Co, Ni, and Cu. In particular, N₂ yield becomes 1.5 times higher than that of nondoped one by doping Cu. Therefore, it is clear that the partial substitution of Mn with Cu is effective for increasing NO decomposition activity. In this study, we investigated the NO decomposition activity on Cu added LBMI.

Figure 1 shows the N₂, O₂, NO₂, N₂O yields on Cu-added LBMI at 1223 K as a function of Cu amount. It is seen that formation of N₂O was hardly observed over all compositions examined. N₂ yield increased with increasing Cu amount and the largest N₂ yield was achieved at the composition from x = 0.2 to 0.3 in La_{0.7}Ba_{0.3}Mn_{0.8-x}In_{0.2}Cu_xO₃. Considering the O₂ yield, it can be said that the optimum amount for Cu addition seems to exist at La_{0.7}Ba_{0.3}Mn_{0.6}In_{0.2}Cu₂O₃ (denoted as LBMICu). It is also noted that NO₂ may be formed in a cool zone after the reactor.

It is reported that coexistence of O_2 and H_2O shows significant interference for NO decomposition^{6,10} and so, NO direct decomposition under coexistence of O_2 and H_2O is highly difficult subject. This is because H_2O and O_2 strongly adsorb on the active site resulting in deactivation of the catalyst. Figure 2 shows the term stability of N_2 and N_2O yield on LBMICu catalyst under coexistence of 5% H_2O and 1% O_2 . It is seen that under coexistence of H_2O and O_2 , N_2 yield of ca. 50% was stably sus-

Table 1. Effects of M cation in $La_{0.7}Ba_{0.3}Mn_{0.2}In_{0.2}M_{0.1}O_3$ on NO decomposition at 1073 K

Dopant	Yield%			
	N ₂	O ₂	NO ₂	N_2O
none	46.8	19.1	27.7	0
Ti	2.2	0.6	1.6	0
Cr	10.7	0.0	10.7	0
V	25.7	2.3	23.4	0
Ni	58.0	34.9	23.1	0
Со	59.0	38.0	21.0	0
Fe	64.5	44.2	20.4	0
Cu	69.4	42.3	27.1	0

 $P_{NO} = 1\%, W/F = 3 \text{ g-cat. min cm}^{-3}$

Figure 1. N₂, O₂, N₂O yield on Cu added LBMI at 1123 K as a function of Cu amount. ($P_{NO} = 1\%$, W/F = 3 g-cat. min cm⁻³)

Figure 2. Term stability of N₂ and N₂O yield in NO direct decomposition on LBMICu catalyst under coexistence of H₂O and O₂. (P_{NO} = 1%, P_{O2} = 1%, P_{H2O} = 5%)

tained over 180h examined after slight decrease in N2 yield within the initial 20 h. On the other hand, no formation of N₂O was observed over 180h examined. Comparing the N2 yield (ca. 55%) without coexistence of H₂O and O₂, small decrease in N₂ yield is observed by coexistence of H₂O and O₂; however, decrease in NO decomposition activity is not significant and returned to an original level after stopping H₂O. Considering the term stability curves of N₂ yield in Figure 2, it is considered that N₂ yield is stably sustained for further longer period. Therefore, NO direct decomposition can proceed over LBMICu perovskite oxide under coexistence of H_2O and O_2 . Up to now, there is only limited number of catalyst on which NO decomposition proceeds under H₂O and O₂ coexisting atmosphere. Therefore, LBMICu is highly attractive as NO removal catalyst based on direct NO decomposition. One reason for small negative influence of H₂O and O₂ on this catalyst is high reaction temperature.

In the exhaust gas from diesel engines, there is small amount of SO_x contained and large part of catalyst is deactivated under existence of SO_x .¹¹ Figure 3 shows the N₂ yield at 1123 K as a function of time under coexistence of H₂O, O₂, and SO₂. Although the period for term stability test is not long, it is evident that the catalyst is tolerant against SO_x and the stable N₂ yield was sustained over 10 h, while the further decrease in N₂ yield was observed by coexistence of SO₂. N₂ yield decreased from 55 to 33% in the initial 5 h. SO_x is strongly adsorbed on the active site on LBMICu resulting in the decreased N₂ yield. However, after stopping SO_x co-feed, the N₂ yield was recovered to almost the original level. Therefore, deactivation of catalyst is not permanent and it is considered that SO_x adsorption is not strong at 1123 K on this catalyst. This is also supported by no compound containing sulfur formed during reaction by XRD measurement.

Consequently, this study revealed that Cu-added $La(Ba)Mn(In)O_3$ is highly attractive as NO decomposition catalyst under the actual exhaust gas atmosphere.

Figure 3. N₂ yield in NO direct decomposition on LBMICu as a function of time under coexistence of H₂O, O₂, and SO₂. (P_{NO} = 1%, P_{O2} = 1%, P_{H₂O} = 5%, P_{SO2} = 0.0085%)

References

- 1 M. Iwamoto, Shokubai, 37, 614 (1995).
- 2 S. Kagawa and Y. Teraoka, Hyomen, 31, 913 (1993).
- 3 H. Hamada, Shokubai, 33, 320 (1991).
- 4 M. Iwamoto, H. Yahiro, S. Shundo, Y. Yu-u, and N. Mizuno, *Appl. Catal.*, **69**, L15 (1991).
- 5 M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine, and S. Kagawa, J. Phys. Chem., 95, 3727 (1991).
- 6 C. Tofan, D. Klvana, and J. Kirchnerova, *Appl. Catal.*, *B*, **36**, 311 (2002).
- 7 M. A. Vannice, A. B. Walters, and X. J. Zhang, J. Catal., 159, 119 (1996).
- 8 Y. Teraoka, T. Harada, and S. Kagawa, J. Chem. Soc., Faraday Trans., **94**, 1887 (1998).
- 9 T. Ishihara, M. Ando, K. Sada, K. Takiishi, K. Yamada, H. Nishiguchi, and Y. Takita, *J. Catal.*, in press.
- 10 M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine, and S. Kagawa, J. Phys. Chem., 95, 3727 (1991).
- 11 E. Kikuchi, K. Yogo, S. Tanaka, and M. Abe, *Chem. Lett.*, **1991**, 1069.