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Biturcations to Periodic and Aperiodic Solutions during Ammonia Oxidation on a Pt Wire 
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Oscillatory states in ammonia oxidation catalyzed by a platinum wire occur around the stoichiometric ratio of the two reactants. 
The boundary of the oscillatory domain is identified as a soft (Hopf) bifurcation at low temperatures and a hard (glob- 
al-saddle-node) bifurcation at higher temperatures. We use this information to construct a qualitative model. The oscillatory 
domain is composed of aperiodic motions interdispersed within bands of multipeak periodic state. Bifurcations in shape of 
the oscillation occur through one of three routes leading to chaos: period doubling, quasiperiodicity, or intermittency. 

Introduction 
Singularity theory provides us with a powerful tool for clas- 

sification and organization of experimental observations and their 
comparison with analytical results. In applying this approach one 
designs the experiments to identify bifurcation points, points of 
transition in characteristic behavior, by sweeping a parameter like 
feed concentration or temperature. The loci of these bifurcations 
are traced then by changing another operating condition. The 
resulting bifurcation map defines the domains of existence of each 
behavior, or their coexistence, in similarity to phase-transition 
diagrams. Like the latter, bifurcation maps can be employed for 
determining design and control procedure, for modeling the be- 
havior, and for comparing various systems in the absence of a 
model. Thus, the map itself can be viewed as a qualitative model. 

Bifurcation maps have been experimentally traced for many 
catalytic reactions showing steady-state multiplicity.'V2 Singular 
points in this case are either ignition or extinction points, their 
identification is relatively simple, and their modeling usually 
requires algebraic equations. The loci of these limit points can 
be traced to their coalescence at  a cusp point. The multiplicity 
bifurcation set is a property of the steady-state model, and os- 
cillatory states which are common to catalytic reactions are usually 
substituted by time averages in such an analysis. 

Maps of dynamic bifurcations were experimentally traced for 
the Belousov-Zhabotinskii (B-Z) r e a ~ t i o n ~ , ~  and electrochemical 
 reaction^.^ Dynamic bifurcation maps of cool-flame and catalytic 
 oscillation^^^^ were constructed from one-dimensional bifurcation 
 diagram^.^,^ Such a posteriori construction, however, cannot 
resolve the ambiguities in the identification process. Four modes 
of bifurcation to simple oscillation are possible. They can be 
accounted for by two ordinary differential equations, and the 
identification of bifurcation is based on the existence or absence 
of the following three features: continuity of amplitudes, hysteresis, 
and infinity of the period. Ambiguity in the idegtification is due 
to insufficient resolution of experiments near the boundary. 

Oscillations in ammonia oxidation, as in most catalytic reac- 
tions,'Osll are of complex shape for most of the oscillatory domain. 
Their shape is usually classified as multipeak periodic, quasi- 
periodic (of two characteristic frequencies), or chaotic. Classi- 
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fication of experimental observations and the determination of 
transition between them cannot always be determined from in- 
spection of time traces and require the employment of more 
elaborate tests. 

Three major routes are generally accepted to account for 
transitions in shape of oscillations,I2 but the theory is not complete 
yet and other (unidentified) transitions were observed experi- 
mentally. One-dimensional bifurcation diagrams were mapped 
and identified for the B-Z reaction and for electrochemical Ni 
dissolution.s Bifurcation diagrams and maps of complex behavior 
in chemically reacting systems are still rare and difficult to attain 
for several reasons: (a) a very good reproducibility is required, 
(b) theoretical guidelines are still missing, and (c) the map itself 
may be. of a complex structure as in the case of the transition from 
frequency-locked to chaotic states.13 Maps of complex motion 
have been determined recently for the B-Z reaction.14 

This work presents a detailed mapping of dynamic bifurcations 
of oscillatory solutions during ammonia oxidation catalyzed by 
an isothermal or a nonisothermal platinum wire. This reaction 
exhibits a richness of instabilities that is summarized in the next 
section. Specifically, we review observations of steady-state 
multiplicity of this reaction to show that they do not interact with 
the dynamic behavior and can be ignored in the present analysis. 
We draw the boundaries of oscillatory behavior in the plane of 
reactant concentrations and identify them in terms of simple 
oscillations. We then identify the sequence of bifurcations in shape 
as a parameter is varied and attempt to characterize the structure 
of the bifurcation map of complex behavior. This work is the first 
such application of dynamic singularity theory for the design of 
experiments in a catalytic reaction. Catalytic oscillations have 
also been observed for oxidation reactions of HZ, CO, and hy- 
drocarbons on transition metalslO," (see Razon and Schmitz" for 
a recent review). Previous work typically portrayed one or several 
bifurcation diagrams without any attempt to identify the bifur- 
cations. Our analysis is aimed at  revealing the main features of 
the underlying kinetic models. The exploitation of the identified 
dynamic bifurcations to simple oscillations for the construction 
of a kinetic model was demonstrated by Sheintuch and LUSS.~ We 
apply this approach here and construct a skeleton model. 

The bifurcation map itself may be of importance for design 
purposes of low-temperature combustion like in the catalytic 
converter. Pt-catalyzed ammonia oxidation is an important 
commercial process that is conducted at  high concentrations and 
temperatures; oscillations are known to exist under these conditions 
as well. 

This study also demonstrates that the structure of complex 
motion in catalytic reactions is as rich as that of the B-Z reaction 
or of hydrodynamic behavior and it can be analyzed by the same 
tools. 
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Instabilities in Ammonia Oxidation 
Pt-catalyzed ammonia oxidation exhibits two steady-state 

branches: the lower branch is inactive while states on the upper 
one are either stable or oscillatory. The upper branch is continuous 
while the lower is isolated when ammonia concentration is varied 
at  high temperatures. At lower temperatures and oxygen con- 
centrations the roles are reversed and the lower branch becomes 
continuous. These multiplicity patterns have been observed in 
various reactors and with different catalyst codigurations: a single 
wire, a single pellet, or a multipellet CSTR.2 The multiplicity 
bifurcation set can be accounted for by a model that admits a 
pitchfork singularity. Inhomogeneous solutions, in the form of 
a partially ignited wire, may also exist and be stable.I5 The 
boundaries of various homogeneous and inhomogeneous branches 
were mapped by Sheintuch and Schmidt.16 Oscillations were 
observed around the stoichiometric ratio on all steady-state 
branches, except for the inactive one. 

Previous studies of oscillations employed industrial-type con- 
ditions: nonisothermal oxidation on Pt wires and foils at  about 
10% NH3 in air. Oscillations under these conditions were reported 
by Flytzani-Stehanopoulos et al.17 for ambient temperatures of 
25-500 OC. Although the resulting surface temperatures 
(1000-1200 "C) were significantly higher than those in the present 
work, the range of concentrations that induce oscillatory solutions 
extrapolates well with our data. Luss and co-workers'* observed 
flickering during oxidation on a Pt wire. They correlated the 
behavior with hydrodynamic fluctuations and suggested flow 
instabilities as their origin. 

Experimental and Data Analysis Procedures 
Ammonia oxidation is catalyzed by a 5-7-cm-long, 0.005-cm- 

diameter platinum wire (United Mineral and Chemical Co.). In 
the isothermal mode the wire resistance, and hence average tem- 
perature, is maintained at a present value by a (PSI, Model 6100) 
constant temperature anemometer. In the nonisothermal mode 
the wire resistance is determined by applying a constant low 
current. The low current is produced by applying 1-5 V across 
the catalytic wire in series with a constant I-kO resistor; the 
measured temperature is unaffected by the applied currents in 
this range. Feed composition is determined and maintained 
constant by controlling the flow rates of ammonia, oxygen, and 
nitrogen by means of (Union Carbide FM 4550) flow controllers. 
Other pertinent experimental information concerning feed puri- 
fication and wire activation and regeneration is detailed else- 
where.2,16 

Time traces presented here are either direct chart recording 
of filtered voltage output or a digitized unfiltered signal. The 
voltage signal from the anemometer is proportional to the current 
required to maintain the wire at a preset resistance. In the former 
case the signal is filtered by the anemometer with a low pass filter 
of 10 Hz (24 dB/octave slope). In the latter case the unfiltered 
signal is sampled and digitized at 10 Hz for 300 s by a (PCI 6380) 
A/D converter and acquired by a (Commodore M M F  9000) 
microcomputer. The power spectra of the unfiltered signal shows 
a peak at  1.2 Hz, significantly above the main frequency of the 
system (-0.1 Hz). To eliminate these high-frequency fluctua- 
tions, the data has been smoothed by replacing the value at each 
point (V,)  with a weighted average of its next six neighbors ( x ( 4  
- kl)V,+,/16,j = -3, ..., 3) using a triangular weight distribution. 
This procedure did not affect the spectra in the range of interest 
and did not distort the signal. 

Time traces are presented as the voltage signal. The rate of 
heat production ( Q )  is proportional to ( Voz - p), where Vo is the 
anemometer reading in the absence of reaction. Although this 
transformation is not linear, the amplitude is sufficiently small 
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Figure 1. Oscillatory domain at 160 O C ;  the bifurcation points are 
denoted by full circles. 

so that it may be considered linear. Heat generation is the state 
variable employed when the bifurcation diagrams are plotted. 
Since two or more reactions are possible in ammonia oxidation, 
the translation of Q to reaction rate is not possible. The enthalpies 
associated with the various products, however, are similar. 

Results 
( a )  Qualitatiue Observations. Oscillations exist around the 

stoichiometric ratio of oxygen to ammonia. In almost all observed 
oscillatory states this ratio is in the range 0.7-1.1; these values 
correspond to the stoichiometric ratios of oxygen to ammonia in 
the reactions that produce N 2  (3/4) or NzO ( l ) ,  which are the 
main products at  low temperatures. This observation was made 
at  various temperatures in the range 90-250 OC and with several 
wires. The bifurcation map at 160 OC is shown in Figure 1. 

Oscillations exist only around the active branch. The inactive 
branch may coexist under these conditions, but the disappearance 
of oscillations always leads to a stable active state. That applies 
at high temperatures where the active branch is continuous as well 
as at low temperatures with a discontinuous upper branch. Thus, 
we may ignore interaction between the inactive branch and the 
periodic solutions. At 160 OC the inactive branch is isolated over 
the whole domain shown in Figure 1. Ammonia concentration 
at ignition declines with increasing oxygen concentration; i.e., the 
multiplicity bifurcation set shows a trend opposite to the oscillation 
boundaries (the ignition line is not shown in Figure 1). 

When multiple active states exist, due to inhomogeneity of the 
wire, then oscillations may exist around several branches in the 
same range of concentrations. The results shown here were ob- 
tained with wires that exhibit only one active state. 

In the range of flow velocities employed in this study ( N 1 
cm/s), the linear velocity in the reactor has a minor effect on the 
oscillations amplitude or shape. This also suggests that the flow 
controllers do not affect the shape of the oscillations. 

To ascertain that the oscillations are not induced by the con- 
trolling anemometer, we conducted several nonisothermal ex- 
periments and verified that they exist in the same range of con- 
centrations as in the isothermal mode. By switching from iso- 
thermal to nonisothermal mode we verified that the two signals 
are of identical frequencies and similar amplitudes (Figure 2). 
To compare the amplitudes, the isothermal heat generation is 
scaled relative to the heat transfer at  the set point (Qo = h( T - 
T,) = ZaR) and the temperature oscillations are scaled with respect 
to the wire to ambient temperature gradient. The shape of the 
two cycles may differ, however; initially the isothermal oscillations 
are periodic and the temperature fluctuations are aperiodic (Figure 
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Figure 2. Similarity of isothermal (upper row) and nonisothermal os- 
cillations (lower row); Qo is the rate of heat transfer at To = 160 ' C ,  and 
T,  = 25 " C  is the ambient temperature. 

(b l  after 75 min 

2) while the situation is reversed after 75 min. 
The slow drift in activity which leads to marked changes in the 

shape of the oscillations, as noted in Figure 2, is the main obstacle 
to a detailed mapping of motions. This drift does not affect the 
nature of the bifurcations to periodic behavior but may alter their 
position. The sequence of motions observed by increasing a pa- 
rameter is similar to that observed in the opposite direction usually 
with a certain drift. We have conducted an extensive study of 
surface compositions, by Auger analysis, and found that the surface 
contains high carbon concentrations that could not be removed 
even by acid etching. Both etched and unetched wires exhibit 
similar multiplicity patterns and show oscillatory behavior around 
the stoichiometric reactant ratio. We could not correlate surface 
composition with any characteristic behavior. 

For the reasons outlined above most of the following study into 
bifurcations was conducted with the same wire over a narrow time 
period. 

(b)  Boundaries of the Oscillatory Domain. We present now 
observations of transitions from stable to simple periodic solutions, 
while ignoring the structure of the oscillatory domain. We identify 
bifurcations observed by changing one reactant's concentrations 
and searching for their loci when the other concentration is varied. 

The lower boundary of the oscillatory domain at 160 "C (Figure 
1) is a line of Hopf bifurcations; crossing this line leads to the 
smooth emergence or disappearance of simple oscillations and their 
amplitude grows continuously with distance from that line (Figures 
3 and 5 ) .  The upper boundary is also a smooth Hopf bifurcation 
at  low concentrations. At intermediate concentrations the bi- 
furcation is soft near the boundary but the amplitude grows fast 
with distance from the bifurcation point. The nature of the 
boundaries is retained, of course, when oxygen concentration is 
varied at fixed ammonia concentration. 

With increasing concentrations the amplitude growth becomes 
steeper at  the boundaries and the oscillations are of the relaxation 
type. At 3% NH, (Figure 7) the oscillations seem to appear by 
a hard bifurcation at the right boundary. We checked for and 
did not detect hysteresis at  this boundary. The sequence of time 
trace in Figure 7 is obtained with decreasing oxygen concentration. 
Traces a and b, obtained upon crossing the bifurcation set, show 
the fast establishment of these cycles. At 3.5% O2 small-amplitude 
high-frequency oscillations appear in a narrow region near the 
upper boundary before changing to large-amplitude low-frequency 
oscillations (Figure 7j,k). Again this transition seems to be 
discontinuous and without hysteresis. The oscillations near that 
boundary are of the relaxation type showing upward spikes (Figure 
7k). At lower concentration they change into downward spikes 
before becoming complex in nature. 

A discontinuous (hard) bifurcation to periodic behavior may 
be one of three types: 

A saddle-loop (homoclinic) bifurcation occurs when the period 
orbit collides with a saddle point. The period approaches infinity 
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Figure 4. Time trams (uppr row, 2W s), power spectra (middle row, (tl Hz) and timedelayed phase planes (lower row, I-s delay) of several states 
in Figure 3. The voltage scale varies from state to state, but the actual amplitude is shown in Figure 3. Amplitude of the power spectra varies from 
IW' to IO'. 
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AMONlA CONCENTRATION 
Figure 5. Bifurcation diagrams with varying ammonia concentration at 
1% and 0.7% 0,; notation as in Figure 3. 

qualities of the actual trajectory. The periodic states P2, P3, and 
P4 exhibit good reproducibility of the basic cycle, as evident from 
the phase plane. State P5 (AM 47) shows some scattering, and 
the aperiodic states tend to fill the whole plane. The power spectra 
should be helpful in discriminating between quasiperiodic and 
chaotic states. It also indicates the degree of instrumental noise 
level; this is relatively low in our case as is evident from states 
AM 57 and 40, which are close to the Hopf bifurcation point. The 
spectrum of periodic cycles shows one basic frequency and its 
harmonics. With increasing number of peaks the basic frequency 
declines and the spectrum is more densely populated. The os- 
cillations are highly nonlinear and require a large number of t e rm 
for their description. 

The spectrum of a quasiperiodic state is characterized by two 
hasic frequencies having an irrational ratio and all their linear 
combinations while a broad-band spectrum characterizes chaos. 
The spectra of states AM 46 and 55 (Figure 4) do not pennit such 
unambiguous discrimination. Further tests suggest that all the 
aperiodic states in Figure 3 are quasiperiodic. Computation of 
the correlation dimension of there states yielded values in the range 
1.5-2.0. (Although the correlation dimension is a lower limit to 
the fractal dimension, the difference between the two measures 
is usually small; measures of chaos are discussed by Schuster.'*) 

The oscillatory domain is narrower at lower ammonia con- 
centrations, but the observed structures at  0.7% and 1% (Figure 
5 )  are similar to that at 1.5%: complex periodic states separated 
by aperiodic states. 

Shape bifurcations usually appear in a sequence. There are 
three main scenarios that may eventually lead to chaos. We 
consider them now in order to classify the transitions in Figures 
3-6: 

The period-doubling scenario consists of consecutive doubling 
of the period and of the trajectory, ending at  a period infinity 
(infinite number of peaks). A sequence of PI, P2, and P4 states 
is shown in Figure 6 (AM 95-93), but the adjacent chaos is 
missing. Studies of one-dimensional maps show that beyond the 
period-doubling sequence of a simple cycle, periodic states with 
K peaks per cycle appear and each of these undergoes its own 
infinite period-doubling sequence. They appear in a certain 
universal sequence, which does not agree with the data in Figures 

1 "  -1 I , , , , , I  , , , 

1 DATA AM93 4 DATA AM94 1 DATA AM95 

Figutt 6. Time tram. power spcctra, and time-dclayed p h a u  planer of 
states in Figure 5. Cmrdinates as in Figure 4, amplitude of rpstra varies 
from 10-2 io 10' 

36; funhennore. the periodic states should be separated by chaotic 
states. while the aperiodic states here are mostly quasiperiodic. 

In the quasiperiodic transition, two characteristic frequencies 
give rise to flow on a t o m  which ultimately breaks in a sequence 
leading to chaos. This transition is usually intercepted by a region 
of frequency locking showing periodic behavior with a winding 
number close to the frequency ratio of the quasiperiodic behavior. 
A typical bifurcation diagram should include then bands of pc- 
riodic behavior, wi th  different numbers of peaks. separated by 
domains of quasiperiodic or chaotic states in agreement with our 
observations. I t  is also evident that several bands of aperiodic 
states wcrc not detected. Such states must scparatc two periodic 
cycles of different periodicity (e.g.. P4 and P3; Figure 3). 

Studies of quasiperiodicity reveal that the frequency-locked 
(periodic) s l a m  form cusp-shaped (Arnold) tongues. in the pa- 
rameter plane, separated by quasiperiodic or chaotic states. The 
wider tongues are of small periodicity; P2. P3, P5. etc. The map 
itself is self-similar in nature, revcaling a finer structure with 
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Figure 7. Traces of states obtained from left to right with decreasing oxygen concentrations at 3% (a-i) and 3.5% (j-r) NH3. These states are almost 
equally spaced within the oscillatory domain (Figure 1). The lower part, a next-peak return map of state g, shows evidence of intermittence. 

increasing magnification. As the tongues grow wider, they overlap 
and the motion then is chaotic. To test this structure, we have 
stretched the scale of ammonia concentration in Figure 5 to align 
the left and right Hopf bifurcations at  0.7% and 1% O2 and 
employed similar scaling at 1.5% (Figure 3). The complex periodic 
states (P2, P3, and P5) are common to these diagrams, and they 
are interdispersed with aperiodic states, but the various domains 
are not organized in the same order. 

At higher concentrations the oscillations are of the relaxation 
type, showing a large peak (L) separated by n small ones (s). The 
structure L + ns is periodic when n is constant; n may vary with 
operating conditions as in the sequence with 4, 3 , 2 ,  and 1 small 
peaks shown in Figure 7m-p. The aperiodic motion in Figure 
7f can be described now by a changing number of small peaks 
that separate the large ones. Over a sequence of 40 large peaks 
we could not detect any pattern in the number of small peaks. 
These shapes are explained in terms of the third scenario leading 
to chaos. 

Intermittency is characterized by bursts of aperiodic oscillations 
separating periodic regions. Its return map is almost tangential 
to the diagonal as in Figure 7 (lower part) and thus a large number 
of (almost periodic) cycles are required to move through the 
intermediate passage. The trajectory travels then in an aperiodic 
manner before being reinjected to the periodic region. 

The oscillatory states at  176 O C ,  studied with a different wire 
than that employed for Figure 1, showed the interaction of two 
widely different frequencies. The bifurcation diagrams and map 
are presented in Figure 8. The oscillations disappear via a hard 
bifurcation at  both ends of the oscillatory domain, going through 
a complex long-period cycle. The transition is not accompanied 

,' 
1 2 3 i i  
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l Z 5 U  0 

AMMONIA CONCENTRATION (VOL '/# ) 

Figure 8. Bifurcation map and diagrams obtained at 176 OC. 

by hysteresis. At 2.53% O2 the behavior at  both boundaries is 
characterized by bursts of periodic behavior on an otherwise stable 
state (Figure 9). The length of the fast oscillatory phase di- 
minishes and the separation of two bursts increases as the boundary 
is approached. Inside the oscillatory domain the behavior is simple 
at  high frequency. The sequence at 3.52% 0, shows bifurcation 
from simple low-frequency oscillations to stable state at the lower 
boundary. The bifurcation is hard, as is evident from the diagram 
in Figure 8, and the period grows as the boundary is approached. 
A similar hard long-period bifurcation from an apparently 
aperiodic state (4.5% NH3) occurs at the upper boundary. In- 
between high- and low-frequency aperiodic states are observed: 
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Figure 9. Sequences of time traces that correspond to the bifurcation 
diagrams in Figure 8. 

the former are intermittent in nature (4.21% and 4.4% NH3; 
Figure 9). 

The bifurcation set at 176 "C is probably an infinite-period 
global saddle node. Unlike the Hopf bifurcation. the hard hi- 
furcations may occur from complex or even aperiodic states. The 
time tram at 176 O C  show fast ( 3 4  and slow (1-min) oscillations. 
The latter grow indefinitely as the boundary is approached since 
the trajectory travels in the vicinity of a saddle node. This hi- 
furcation occurs from periodic simple slow oscillations, from 
aperiodic oscillations, or by intermittent hunting behavior (Figure 
9). 

Discussion 
Our analysis is aimed at  determining the main featurcs of the 

underlying kinetic model. Although the physicochemical mech- 
anism cannot be elucidated from reaction rate measurements, we 
discriminate between classes of model by capitalizing on the 
stoichiometric location of the oscillatory domain and the time 
scales evident in this reaction. The mathematical features of the 
model can he determined from the nature of bifurcations to pe- 
riodic solution. More information can be gained from the structure 
of the oscillatory domain and the bifurcation to complex and 
aperiodic solutions. 

Although oscillations are common to catalytic oxidation re- 
action, they were usually observed in oxygen-rich environment 
when catalyzed by a noble metal and in fuel-rich mixtures when 
catalyzed hy Ni and Cu. The existence of oscillations around the 
stoichiometric ratio suggests that they are induced by competition 
between the two reactants and that gas-phase concentrations (C,) 
should be employed as the dynamic variables. A simple CSTR- 
type model that accounts for reactant and product mass transfer 
and subsequent reaction (r,) is 

(1) 

We will need to specify the "reactor" volume in equilibrium with 
unit surface area (av). Isothermal oscillations may be admitted 
by such a model with autocatalytic kinetics and different mass- 
transfer coefficients (kc,) of the two reactants. The period of these 
oscillations, however, I S  (kCaJ1 in order of magnitudes. Since 
at steady state kc,(Cb, - C,) = r,, then the period is approximated 
by Cb,fr,av. The term r i / C ,  is 5-10 cm/s for our data, and 
unreasonably high values of volume to surface rations (11%) are 

.;IC, = &,,(C, - C,) - r, =fi 

g = o  f = O  
i I i I 

I A,:!,.. . ,. . .  . .  

r 

'b l  

Figure 10. (Top) Schematic bifurcation map that accounts for Figure 
I. The Hopf (solid) and saddle-node (broken) lines divide the map into 
regions of characteristic behavior. The insert shows the curves f = 0 and 
g = 0 of the GSN phase plane. (Bottom) Characteristic bifurcation 
diagram; it also shows the inactive branch which is not accounted for in 
the map 

required in order to account for the 3-10-s oscillations. 
A model that accounts for a detailed surface mechanism will 

predict a period that is similar to the turnover number; since 
adsorption capacity is 2 X 10-9 g mol/cmz, then such a model will 
predict millisecond oscillations. We are led to conclude, therefore, 
that the oscillations' long period is due to a slow surface modi- 
fication, like surface oxidation on poisoning. A model with widely 
different time scales, a fast reaction, and a slow surface modi- 
fication may account for the observed relaxation oscillations if 
the fast reaction admits multiple solutions in a range of surface 
modifications. The model may account for the domain of os- 
cillations if the required histahility is attained around the stoi- 
chiometric ratio. 

We may choose the reactant concentrations as the fast dynamic 
variables (eq 1) and the fraction of inactive surface area (8) as 
the slow one. The latter equation may be written in the general 
form 

9 = k,g(CI,Cz,8) (2) 

The two reactant halances may be reduced to one dynamic 
equation when rz/rl = Y ,  a stoichiometric ratio, and k., = kw We 
find then a linear relation between Cl and C, and need to consider 
only two differential equations. For relaxation oscillations we are 
interested only in the shape of the curve of slow motion along f l  
= fz = 0 and we can find a dependence C, ( C , )  under a much 
less restrictive assumption. We assume that two differential 
equations are sufficient to describe the system. We are now ready 
to specify the shapes off(CI,B) =f l (C , ,Cz (Cl ) ,8 )  = 0 and g = 
0 that will admit the observed bifurcations at  160 OC. 

At low reactant concentrations the oscillatory domain is 
bounded by the Hopf bifurcation points. At a high oxygen con- 
centration the oscillations appear, with decreasing ammonia 
concentration, by a Hopf bifurcation and disappear via a gloh- 
al-saddle-node bifurcation. We have rejected the interpretation 
of a steep Hopf bifurcation since at 176 OC that boundary is clearly 
a global saddle node. Figure IO (bottom) shows the stable and 
unstable branches of a schematic bifurcation diagram with these 
features. It also includes the inactive branch. We search therefore 
for a model that accounts for the transition between this diagram 
and one with two Hopf points. Systems with widely separated 
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time scales may indeed explain a boundary that changes from a 
Hopf bifurcation to a global saddle node. The details are described 
by Sheintuch and LUSS;~ Figures 5,10, and 11 in ref 6 show typical 
phase planes and a bifurcation map of a specific model. We use 
that information in interpreting the NH, oxidation map. 

Figure 10 (top) shows a qualitative bifurcation map that ex- 
plains Figure 1. The Hopf and saddle-node bifurcation sets are 
denoted by continuous and broken lines, respectively; the two are 
tangent at point T, which separates each set to an observable (thick 
line) and an unobservable (thin line). Together they separate the 
plane into regions with the following phase planes: a unique state 
(U), a stable state coexisting with two unstable ones (U,), and 
a limit cycle surrounding one (0) of three (0,) states. The phase 
plane that corresponds to the global-saddle-node (GSN) boundary, 
shown in the inset, specifies the form off = 0 and g = 0 null curves. 
The other phase planes are obtained by perturbations from it; the 
f = 0 line and the location of the steady states which are shown 
in Figure 10 are sufficient to determine the motion. Crossing the 
GSN, for example, introduces two steady states in the limit cycle 
path and destroys it. The Hopf line is crossed when a steady state 
moves through an extremum point o f f =  0. 

A possible qualitative model for the bifurcation map should 
have therefore the properties shown in Figure 10 (insert). A 
mechanistic model that obeys these specifications was suggested 
in ref 6 to account for observations of Hopf and global-saddle-node 
bifurcations during CO oxidation in excess oxygen. A Lang- 
muir-Hinshelwood rate expression was employed there to obtain 
the multivalued f = 0 curve. 

The skeleton two-variable model described above cannot ac- 
count, of course, for complex oscillations. Furthermore, even our 
interpretation of the structure of the oscillatory domain is based 
on the analysis of difference equations and several numerical 
examples of ordinary differential equations. Mapping of the 
behavior of the simple circle mapZo On+l = 0, + Q - (k/27r) sin 
2 d n ,  in the k-il plane, shows tongues of frequency-locked states 
interdispersed within quasiperiodic or chaotic states. On the basis 
of this result and our observations we draw schematically (dotted 
line, Figure 10) the boundaries of simple periodic and quasiperiodic 
behaviors and several frequency-locked tongues. There are an 
infinite number of these, and they may be terminated at  the 
boundary of chaotic behavior. All three types of scenarios leading 
to chaos exist in the evolution of the circle map. 

(20) Mackay, R. S.; Tresser, C. Physicn D (Amsrerdam) 1986, I9D, 
206-237. 

Concluding Remarks 
This work demonstrates the advantages of applying recent 

mathematical studies of dynamical systems to the design and 
analysis of experimental results. The discussion shows that the 
most systematic study of dynamical systems is to map behavior 
in the parameter plane, instead of finding just a set of operating 
conditions corresponding to different phase-plane behavior. 
Obviously a map in a three-parameter space could be even more 
discriminatory for modeling purposes, but its finding requires a 
significant experimental effort. 

The experimentation time required for drawing a bifurcation 
map increases with the characteristic period of the oscillation and 
with the degree of resolution required. Poor reproducibility of 
experiments reduces the resolution. The understanding of the B-Z 
and other liquid-phase reactions led to high degree of reproduc- 
ibility in open systems and enabled a detailed mapping. Maselko 
and SwinneyI4 recently mapped the nature of complex oscillations 
in the B-Z reaction. These oscillations are characterized by a 
mixture of small and large peaks at a ratio that varies in a fractal 
nature as a parameter is varied: between any two complex periodic 
states there exist other periodic solutions which are a mixture of 
the adjacent states. Catalytic oscillations are usually slow (minutes 
to hours) and are accompanied by a certain degree of irrepro- 
ducibility due to the changing nature of the catalytic surface. 
Ammonia oxidation is exceptional in showing fast oscillation and 
relatively good reproducibility. That enabled a detailed mapping 
of bifurcations to periodicity in the parameter plane and of shape 
bifurcations in one parametric dimension. We showed that the 
richness of behavior in this, and presumably other, catalytic re- 
actions is comparable to that of the B-Z reaction or of hydro- 
dynamic systems. 

This paper demonstrates that when the system is characterized 
by widely different time scales, a simple qualitative model may 
be developed from knowledge of the observed bifurcations to 
periodic behavior. This identification gives physical insight into 
the qualitative features of the balancesf= 0 and g = 0. A similar 
approach for prediction of shape bifurcations is still lacking. Such 
modeling may be possible when the system shows a mixture of 
two kinds of oscillations (e.g., large and small; Figure 7 ) ;  that is 
the subject of our current investigation. 
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This paper reports our results for the experimental determination of the equilibrium constant and its temperature dependence 
for the solution-phase hydrogen-isotope-exchange reaction OD-(daq) + HS-(aq) OH-(aq) + DS-(daq). The results were 
obtained from measurements on electrochemical double cells of the type Pt(s)lD2(g)lNa2S(daq)IHgS(s)lHg(l)lHgS(s)l- 
NazS(aq)lHz(g)lPt(s) and analogous cells involving silver sulfide-silver electrodes in place of the mercuric sulfide-mercury 
electrodes. The experimental value of the equilibrium constant at 25.0 O C  for the reaction is K = 0.534 f 0.01 1; the experimental 
value of the standard entropy change at 25.0 O C  for the reaction is ASo = 7.0 f 1.8 J-K-'. 

Introduction 
This paper reports part of a continuing investigation of the 

thermodynamics of hydrogen-isotope-exchange rea~t ions l -~  di- 

rected toward (1) providing experimental data to test the statistical 
thermodynamic theory of isotope-exchange reactions; and (2) 

(1 )  Silvester, L. F.; Kim, J. J.; Rock, P. A. J .  Chem. Phys. 1972, 56, 1863. 
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