AGRICULTURAL AND FOOD CHEMISTRY

Article

Kresoxim-methyl Derivatives: Synthesis and Herbicidal activities of (Pyridinylphenoxymethylene)phenyl Methoxyiminoacetates

Yang-Yang Cao, Da-Jie Mao, Wei-Wei Wang, and Xiao-Hua Du

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.7b02710 • Publication Date (Web): 07 Jul 2017

Downloaded from http://pubs.acs.org on July 18, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society.

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

- 1 Kresoxim-methyl Derivatives: Synthesis and Herbicidal Activities
- 2 of (Pyridinylphenoxymethylene)phenyl Methoxyiminoacetates
- 3 Yang-yang Cao,[†] Da-jie Mao,^{†,‡} Wei-wei Wang,[†] and Xiao-hua Du^{*,†}
- 4 *†Catalytic Hydrogenation Research Center, Zhejiang University of Technology,*
- 5 Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology,
- 6 Zhejiang Green Pesticide Collaborative Innovation Center, Hangzhou 310014, PR China
- 7 ‡Ninhua Co. Ltd., Ningbo 315000, PR China

^{*} Corresponding author (Tel: +86-571-88320430; Fax: +86-571-88320066; E-mail: <u>duxiaohua@zjut.edu.cn</u>).

8 Abstract

A series of new kresoxim-methyl derivatives, (pyridinylphenoxymethylene)phenyl 9 methoxyiminoacetates, were synthesized and their structures were confirmed by NMR and 10 HRMS. Although derived from a fungicide, the bioassays indicated that several new 11 compounds had good herbicidal activities. At 37.5 g a.i./ha, compound 5c showed 100% 12 inhibition against Abutilon theophrasti, Amaranthus retroflexus and Eclipta prostrata, 13 which was better than mesotrione. Compound 5e had a broad herbicidal spectrum against 14 broadleaf weeds. The present work indicates that 5c and 5e may serve as new candidates 15 for potential herbicides. 16

17 Keywords: Pyridinylphenyl, Methoxyiminoacetate, Synthesis, Herbicidal activity

Page 3 of 30

18 Introduction

Strobilurins, an important family of fungicides, have been widely identified as one of the 19 most promising lead compounds for the development of a new generation of industrial 20 fungicides for crop protection.¹⁻⁶ Since the successful development of kresoxim-methyl and 21 azoxystrobin, many chemists have studied strobilurins. At present, the modification of these 22 new compounds is mainly concentrated in the side chain,⁷⁻¹¹ including the structure of 23 benzothiazole,^{12,13} chalcone,¹⁴ N-acetyl pyrazoline,¹⁵ pyrazole,¹⁶ and quinoxaline¹⁷ 24 structures. Some new strobilurin derivatives which were introduced of pyridine structure in 25 the side chain showed excellent biological activities,¹⁸⁻²⁰ however, few of them with good 26 herbicidal activity have been reported. 27

Substituted phenylpyridines described by Schaefer et al.^{21,22} showed good herbicidal activity. Liu et al.²³ also reported that some substituted benzenesulfonamides with phenylpyridine moieties showed better herbicidal activities than mesotrione.

In our research on the fungicidal activities of kresoxim-methyl derivatives.²⁴ some 31 serious phytotoxities by several methoxyiminoacetate compounds containing 32 phenylpyridine moieties were found, which raised our interest in the study of herbicidal 33 activity of this kind of compounds. Herein, a series of new structural kresoxim-methyl 34 derivatives were obtained by splicing the phenylpyridine structure with the active structure 35 of kresoxim-methyl. These newly synthesized compounds were characterized by ¹H NMR, 36 ¹³C NMR, and HRMS. Furthermore, the herbicidal activities were investigated with in vitro, 37 glasshouse and field tests. 38

39 Materials and methods

40 **Synthesis.** All starting materials and reagents were commercially available and used 41 without further purification except as indicated. Solvents, such as dichloromethane,

dimethylformamide, isopropanol, ethyl acetate, petroleum ether, and acetone were 42 purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd. (Shanghai, China). 43 Chemical 4-hydroxyphenylboronic acid, reagents, such as 44 45 2,3-Dichloro-5-(trifluoromethyl)pyridine, and 2-Bromo-3,5-dichloropyridine were purchased from Shanghai Shaoyuan Co. Ltd. (Shanghai, China). ¹H NMR and ¹³C NMR 46 spectra were recorded on an AVANCE III spectrometer (Bruker, Hangzhou, China) at 500 47 48 and 125 MHz NMR, respectively. High resolution mass spectrometry (HRMS) were 49 recorded on a model 6545 Q-TOF LCMS spectrometer equipped with an ESI source and controlled by MassHunter software (Agilent, Hangzhou, China). Melting points were taken 50 on a B-545 melting point apparatus (Buchi, Hangzhou, China) and were uncorrected. 51

52 An overview synthesis of (pyridinylphenoxymethylene)phenyl methoxyiminoacetates 53 is shown in Figure 1.

Synthesis of Intermediates A (3a-3p). 4-(3-Chloro-5-trifluoromethylpyridin-2-yl) 54 phenol, 3c, as an example. 2,3-Dichloro-5-trifluoromethylpyridine (5 mmol, 1.08 g), 55 4-hydroxybenzeneboronic acid (5.5 mmol, 0.76 g), potassium phosphate tribasic (10 mmol, 56 4.25 g) and bis(triphenylphosphine)palladium(II) chloride (0.5 mol%, 0.056 g) in a mixture 57 of 10 mL of isopropanol and 10 mL of water were stirred at 60 °C for 3 h in a nitrogen 58 59 atmosphere. Thereafter, the reaction solution was poured into water, followed by extraction with ethyl acetate three times. The organic layers were combined, washed with an aqueous 60 61 saturated sodium chloride solution, dried with anhydrous sodium sulfate, and concentrated. The residue was subjected to recrystallization using ethanol and water at the temperature of 62 70 °C to obtain 1.15 g white solid of intermediate 3c. 63

64 The other intermediates were synthesized by the same method.

65 Synthesis of Intermediate B (4). Methyl (2-chloromethyl)- α -methyloximinobenzene

acetate was synthesized according to the previously reported route,^{25,26} which is shown in
Figure 2.

68	Synthesis	of	Kresoxim-me	ethyl	Derivative	S.	Methyl
69	(<i>E</i>)-α-(methoxyimino)-2-((4-(3	-chloro-5-trifluor	omethylpyric	lin-2-yl)pher	noxy)meth	yl)benz
70	ene acetate is describ	ed as an e	example. 3c (3 m	mol, 0.87 g),	10 mL of d	imethylfor	mamide
71	(DMF) and sodium h	ydride (4.	5 mmol, 0.18 g)	were stirred a	t room temp	perature for	r 30 min
72	Then, 4 (3.6 mmol,	0.89 g) v	vas added and tl	ne reaction w	as stirred a	t 60 °C fo	or 10 h.
73	Thereafter, the reaction	on solutio	on was poured in	to water, foll	owed by ex	traction wi	ith ethyl
74	acetate three times. T	The organi	ic layers were co	mbined, was	hed with an	aqueous s	aturated
75	sodium chloride solu	ution, drie	ed with anhydro	us sodium s	ulfate, and	concentrat	ed. The
76	residue was subjec	cted to	silica gel col	umn chrom	atography	using pe	etroleum
77	ether/dichloromethan	e/acetone	(10:1:1, v/v/v)	to obtain	5c as a v	white soli	d, m.p.
78	97.2-98.7 °C.						

79 The remaining compounds were synthesized using the synthetic method of **5c**.

5a. Yield: 78.7%. Yellow solid. M.p. 89.8-91.6 °C. ¹H NMR (500MHz, CDCl₃) δ: 8.86
(d, *J*=1.1Hz, 1H), 8.02 (d, *J*=1.6Hz, 1H), 7.41-7.34 (m, 5H), 7.16-7.14 (m, 1H), 7.10 (td, *J*=7.5, 1.0Hz, 1H), 6.93 (d, *J*=8.5, 1H), 4.98 (s, 2H), 4.04 (s, 3H), 3.85 (s, 3H). ¹³C NMR
(125MHz, CDCl₃) δ: 163.18, 159.48 (d, *J*=1.25Hz), 155.71, 149.01, 143.92 (q, *J*=3.75Hz),
135.23, 134.02 (q, *J*=3.75Hz), 132.44, 130.92, 130.24, 129.63, 127.72 (q, *J*=78.75Hz),
126.68, 126.43, 126.16, 125.81, 123.92, 121.75, 121.20, 112.84, 68.19, 63.86, 53.04.
HR-MS: (M+Na)⁺, C₂₃H₁₈ClF₃N₂O₄Na, calculated: 501.0799, found: 501.0804.

5b. Yield: 80.2%. White solid. M.p. 88.3-89.9 °C. ¹H NMR (500MHz, CDCl₃) δ: 9.04 (d,

88 J=1.0Hz, 1H), 8.59 (d, J=1.5Hz, 1H), 7.56 (d, J=7.4Hz, 1H), 7.47-7.39 (m, 3H), 7.29 (d,

89 J=7.65Hz, 1H), 7.24 (dd, J=7.5, 1.25Hz, 1H), 7.21-7.20 (m, 1H), 7.07-7.05 (m, 1H), 4.98 (s,

2H), 3.89 (s, 3H), 3.70 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.26, 159.63, 158.21,
149.43, 144.12 (q, J=3.75Hz), 138.18, 135.30 (q, J=3.75Hz), 135.02, 130.26, 129.60,
129.39, 129.31, 128.61, 127.83 (d, J=1.25Hz), 126.13 (q, J=32.5Hz), 123.80, 122.17,
121.63, 116.31, 115.74, 68.53, 63.81, 52.95. HR-MS: (M+Na)⁺, C₂₃H₁₈ClF₃N₂O₄Na,
calculated: 501.0799, found: 501.0801.

5c. Yield: 85.5%. White solid. M.p. 97.2-98.7 °C. ¹H NMR (500MHz, CDCl₃) δ: 8.82 (d, 95 J=0.9Hz, 1H), 8.02 (d, J=1.5Hz, 1H), 7.78-7.75 (m, 2H), 7.57 (d, J=7.5Hz, 1H), 7.49-7.41 96 (m, 2H), 7.24 (d, J=7.5, 1.2Hz, 1H), 7.02-7.00 (m, 2H), 5.04 (s, 2H), 4.05 (s, 3H), 3.87 (s, 97 3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.18, 159.54, 159.20, 149.35, 144.05 (q, J=3.8Hz), 98 135.22 (q, J=3.3Hz), 134.80, 130.97, 129.67 (d, J=5Hz), 129.53, 129.37, 128.56, 127.77 (d, 99 100 J=13.2Hz), 125.35 (q, J=33.75Hz), 122.74 (q, J=271.25Hz), 114.34, 77.28, 77.03, 76.78, 68.37, 63.74, 52.87, 43.79. HR-MS: (M+Na)⁺, C₂₃H₁₈ClF₃N₂O₄Na, calculated: 501.0799, 101 found: 501.0799. 102

5d. Yield: 80.6%. Yellow solid. M.p. 95.0-96.7 °C. ¹H NMR (500MHz, CDCl₃) δ : 8.55 (d, *J*=2.1Hz, 1H), 7.81 (d, *J*=2.1Hz, 1H), 7.56 (d, *J*=7.4Hz, 1H), 7.45-7.30 (m, 5H), 7.23 (dd, *J*=7.5, 1.2Hz, 1H), 7.00-6.99 (m, 1H), 5.03 (s, 2H), 4.01 (s, 3H), 3.82 (s, 3H). ¹³H NMR (125MHz, CDCl₃) δ : 163.24, 158.15, 154.39, 149.42, 146.39, 138.37, 137.43, 135.09, 130.52, 130.18, 129.56, 129.36, 129.18, 128.56, 127.81, 127.77, 122.11, 115.76, 115.64, 68.45, 63.79, 52.94. HR-MS: (M+Na)⁺, C₂₂H₁₈Cl₂N₂O₄Na, calculated: 467.0536, found: 467.0536.

5e. Yield: 78.9%. White solid. M.p. 107.5-110.6 °C. ¹H NMR (500MHz, CDCl₃) δ: 8.53
(d, J=2.15Hz, 1H), 7.81 (d, J=2.15Hz, 1H), 7.70-7.67 (m, 2H), 7.57 (d, J=7.6Hz, 1H),
7.48-7.40 (m, 2H), 7.23 (dd, J=7.53, 1.2Hz, 1H), 6.70-6.98 (m, 2H), 5.02 (s, 2H), 4.05 (s,
3H), 3.86 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.27, 159.17, 154.20, 149.44, 146.38,

114 137.45, 135.00, 130.77, 129.95, 129.94, 129.88, 129.85, 129.60, 129.41, 128.60, 127.85, 115 127.79, 114.37, 114.36, 68.41, 63.83, 52.97. HR-MS: $(M+Na)^+$, $C_{22}H_{18}Cl_2N_2O_4Na$, 116 calculated: 467.0536, found: 467.0535.

5f. Yield: 77.8%. Yellow oil. ¹H NMR (500MHz, CDCl₃) δ: 8.50 (d, J=0.5Hz, 1H),
7.58-7.53 (m, 4H), 7.47-7.37 (m, 3H), 7.24-7.22 (m, 1H), 6.99 (dd, J=7.9, 2.4Hz, 1H), 5.03
(s, 2H), 4.03 (s, 3H), 3.85 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.31, 158.63, 149.50,
144.30, 144.26, 135.73, 135.11, 129.58, 129.53, 128.61, 127.98, 127.87, 124.49, 124.30,
121 121.54, 121.49, 116.12, 114.93, 114.89, 68.53, 63.84, 52.98. HR-MS: (M+Na)⁺,
C₂₂H₁₈ClFN₂O₄Na, calculated: 451.0831, found: 451.0831.

5g. Yield: 75.7%. White solid. M.p. 129.0-131.8 °C. ¹H NMR (500MHz, CDCl₃) δ: 8.47 123 124 (d, J=0.5Hz, 1H), 7.91 (dd, J=8.8, 1.5Hz, 2H), 7.57 (d, J=7.4Hz, 1H), 7.52 (dd, J=10.55, 2.0Hz, 1H), 7.48-7.40 (m, 2H), 7.23 (dd, J=7.5, 1.2Hz, 1H), 7.02-6.99 (m, 2H), 5.03 (s, 2H), 125 4.04 (s, 3H), 3.87 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.28, 158.43 (d, *J*=261.25Hz), 126 155.28, 149.42, 144.13 (d, J=6.25Hz), 144.03, 134.95, 130.04, 129.99, 129.61, 129.54 (d, 127 J=3.75Hz), 129.41, 128.61, 127.88, 127.80, 127.35 (d, J=5Hz), 124.20 (d, J=23.75Hz), 128 114.80, 114.79, 68.39, 63.84, 52.99. HR-MS: $(M+Na)^+$, $C_{22}H_{18}ClFN_2O_4Na$, calculated: 129 451.0831, found: 451.0831. 130

5h. Yield: 70.8%. Colorless oil. ¹H NMR (500MHz, CDCl₃) δ: 8.37 (s, 1H), 7.56 (d, J=7.55Hz, 1H), 7.46-7.38 (m, 3H), 7.34 (t, J=7.9, 7.9Hz, 1H), 7.21 (d, J=7.35Hz, 1H), 7.10 (d, J=7.55Hz, 1H), 7.04 (s, 1H), 6.94 (dd, J=8.23, 2.33Hz, 1H), 5.01 (s, 2H), 4.00 (s, 3H), 3.82 (s, 3H), 2.36 (s, 3H), 2.26 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.21, 158.13, 155.64, 149.42, 147.22, 141.89, 139.08, 135.32, 131.53, 130.18, 129.51, 129.27, 129.11, 128.46, 127.70, 127.61, 121.82, 115.17, 114.50, 68.23, 63.75, 52.88, 19.69, 17.90. HR-MS: (M+H)⁺, C₂₄H₂₅N₂O₄, calculated: 405.1809, found: 405.1809.

5i. Yield: 74.3%. Cream yellow solid. M.p. 107.4-108.9 °C. ¹H NMR (500MHz, CDCl₃)
δ: 8.35 (d, *J*=1.25Hz, 1H), 7.58 (d, *J*=7.5Hz, 1H), 7.47-7.39 (m, 5H), 7.23 (dd, *J*=7.55,
1.2Hz, 1H), 6.98-6.95 (m, 2H), 5.00 (s, 2H), 4.05 (s, 3H), 3.86 (s, 3H), 2.35 (s, 3H), 2.34 (s,
3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.30, 158.12, 155.43, 149.49, 147.22, 139.26,
135.24, 133.41, 131.17, 130.24, 130.18, 130.08, 129.58, 129.39, 128.53, 127.84, 127.76,
115.40, 114.38, 68.37, 63.83, 52.97, 20.04, 17.91. HR-MS: (M+H)⁺, C₂₄H₂₅N₂O₄,
calculated: 405.1809, found: 405.1809.

5j. Yield: 68.9%. Yellow solid. M.p. 104.7-105.9 °C. ¹H NMR (500MHz, CDCl₃) δ:
8.45-8.44 (m, 1H), 7.83-7.82 (m, 1H), 7.59-7.57 (m, 1H), 7.47-7.33 (m, 3H), 7.27-7.20 (m,
3H), 6.97-6.94 (m, 1H), 5.01 (s, 2H), 4.02 (s, 3H), 3.83 (s, 3H), 2.39 (s, 3H). ¹³C NMR
(125MHz, CDCl₃) δ: 163.24, 158.00, 154.98, 149.43, 148.46, 141.59, 140.71, 135.24,
133.46, 129.54, 129.31, 128.99, 128.49, 127.80, 127.67, 122.17, 119.22, 115.58, 115.29,
68.35, 63.80, 52.93, 17.57. HR-MS: (M+Na)⁺, C₂₃H₂₁BrN₂O₄Na, calculated: 491.0577,
found: 491.0577.

5k. Yield: 65.3%. Yellow solid. M.p. 142.1-143.6 °C. ¹H NMR (500MHz, CDCl₃) δ:
8.43-8.42 (m, 1H), 7.81-7.80 (m, 1H), 7.63-7.61 (m, 2H), 7.58-7.57 (m, 1H), 7.48-7.39 (m,
2H), 7.23 (dd, *J*=7.53, 1.23Hz, 1H), 6.98-6.96 (m, 2H), 5.02 (s, 2H), 4.05 (s, 3H), 3.86 (s,
3H), 2.37 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.26, 158.68, 154.71, 149.43, 148.41,
141.73, 135.11, 132.95, 132.20, 130.71, 129.57, 129.36, 128.53, 127.79, 127.77, 125.77,
122.06, 119.13, 114.13, 68.33, 63.83, 52.96, 17.52. HR-MS: (M+Na)⁺, C₂₃H₂₁BrN₂O₄Na,
calculated: 491.0577, found: 491.0577.

51. Yield: 60.6%. Colorless oil. ¹H NMR (500MHz, CDCl₃) δ: 8.51 (d, *J*=1.95Hz, 1H),
7.58 (d, *J*=1.2Hz, 1H), 7.35-7.32 (m, 5H), 7.15-7.13 (m, 1H), 7.08 (t, *J*=7.35, 7Hz, 1H),
6.92 (d, *J*=8.2Hz, 1H), 4.92 (s, 2H), 4.03 (s, 3H), 3.85 (s, 3H), 2.19 (s, 3H). ¹³C NMR

(125MHz, CDCl₃) δ: 163.17, 155.50, 155.12, 149.02, 145.25, 136.88, 135.29, 134.26, 162 130.56, 130.35, 129.81, 129.60, 129.38, 128.25, 127.99, 127.34, 126.66, 121.47, 113.06, 163 68.20, 63.84, 53.03, 18.97. HR-MS: $(M+H)^+$, $C_{23}H_{22}ClN_2O_4$, calculated: 425.1263, found: 164 165 425.1263. 5m. Yield: 62.8%. Brown oil. ¹H NMR (500MHz, CDCl₃) δ: 8.54 (d, *J*=1.65Hz, 1H), 166 7.68 (s, 1H), 7.56 (d, J=7.4Hz, 1H), 7.46-7.36 (m, 3H), 7.21 (dd, J=7.55, 1.2Hz, 1H), 7.11 167 (d, J=7.5Hz, 1H), 7.03 (s, 1H), 6.98 (dd, J=8.2, 2.15Hz, 1H), 5.02 (s, 2H), 4.00 (s, 3H), 168 3.83 (s, 3H), 2.30 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.17, 158.16, 156.53, 149.36, 169 145.48, 140.69, 137.84, 135.14, 132.30, 130.21, 129.50, 129.28, 128.50, 127.66, 125.77, 170 121.64, 115.14, 114.94, 68.28, 63.73, 53.38, 52.87, 19.72. HR-MS: (M+H)⁺, C₂₃H₂₂ClN₂O₄, 171 172 calculated: 425.1263, found: 425.1263.

5n. Yield: 61.9%. Brown oil. ¹H NMR (500MHz, CDCl₃) δ: 8.47 (s, 1H), 7.58-7.40 (m,
6H), 7.23 (d, *J*=7.25Hz, 1H), 6.98 (s, 2H), 5.01 (s, 2H), 4.05 (s, 3H), 3.87 (s, 3H), 2.38 (s,
3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.26, 158.47, 156.39, 149.44, 145.57, 145.56,
137.90, 135.06, 132.32, 132.02, 130.21, 130.20, 129.76, 129.58, 129.39, 128.54, 127.80,
114.49, 114.48, 68.38, 63.82, 52.96, 20.13. HR-MS: (M+Na)⁺, C₂₃H₂₁ClN₂O₄Na, calculated:
447.1082, found: 447.1082.

50. Yield: 55.5%. White solid. M.p. 123.0-125.2 °C. ¹H NMR (500MHz, CDCl₃) δ: 8.59
(d, *J*=1.95Hz, 1H), 7.76 (d, *J*=1.65Hz, 1H), 7.56 (d, *J*=7.45Hz, 1H), 7.46-7.34 (m, 3H),
7.21 (dd, *J*=7.4, 1.1Hz, 1H), 7.08 (d, *J*=7.6Hz, 1H), 7.02-7.01 (m, 1H), 6.96 (dd, *J*=8.2,
2.1Hz, 1H), 5.01 (s, 2H), 4.00 (s, 3H), 3.83 (s, 3H), 2.27 (s, 3H). ¹³C NMR (125MHz,
CDCl₃) δ: 163.24, 158.23, 156.80, 149.41, 147.57, 140.89, 140.48, 135.18, 132.97, 129.57,
129.38, 129.31, 128.55, 127.73, 127.71, 121.64, 119.01, 115.13, 115.12, 68.35, 63.80,
52.94, 19.75. HR-MS: (M+H)⁺, C₂₃H₂₂BrN₂O₄, calculated: 469.0757, found: 469.0756.

5p. Yield: 58.7%. White solid. M.p. 107.4-110.2 °C. ¹H NMR (500MHz, CDCl₃) δ: 8.58
(d, *J*=1.9Hz, 1H), 7.76 (d, *J*=1.55, 1H), 7.57 (d, *J*=7.55Hz, 1H), 7.47-7.42 (m, 4H), 7.23
(dd, *J*=7.55, 1.15Hz, 1H), 7.00-6.97 (m, 2H), 5.01 (s, 2H), 4.05 (s, 3H), 3.86 (s, 3H), 2.38
(s, 3H). ¹³C NMR (125MHz, CDCl₃) δ: 163.27, 158.53, 156.67, 149.43, 147.68, 140.80,
135.05, 132.60, 132.18, 130.20, 130.19, 129.58, 129.39, 128.55, 127.81, 127.80, 118.47,
114.53, 114.52, 68.39, 63.83, 52.97, 20.12. HR-MS: (M+Na)⁺, C₂₃H₂₁BrN₂O₄Na, calculated:
491.0577, found: 491.0577.

Herbicidal Activities Assay in Petri Dish Tests. Wheat, sorghum, barnyard grass, 193 cucumber, rape and radish seeds were selected as the test targets. The germinated seeds 194 were placed in the 9 cm inner diameter petri dish respectively with two layers of filter 195 papers and 9 mL of each new compound solutions at 100 mg/L were added into the petri 196 dish. Afterwards, the petri dish were placed in an artificial climate chamber at a temperature 197 of 28 °C, light intensity of 300 Lux, and relative humidity of 75%. The root and stem 198 inhibition rate of all the test targets were investigated after 7 d. The results are showed in 199 200 Table 1.

201 Herbicidal Activities Assay in Glasshouse Tests. All plant materials were obtained 202 from the Bioassay Testing and Safety Assessment Center in Zhejiang Research Institute of 203 Chemical Industry. The herbicidal activities of all target compounds against monocotyledon 204 weeds such as Digitaria sanguinalis, Echinochloa crusgalli, Setaria viridis, Alopecurus aequalis, Polypogon fugax, and Poa annua and dicotyledon weeds such as Abutilon 205 theophrasti, Amaranthus retroflexus, Eclipta prostrata, Brassica juncea, Chenopodium 206 serotinum, and Stellaria media were evaluated according to a previously reported 207 procedure.²⁷⁻²⁹ Mesotrione and pyribambenz-isopropyl were selected as controls. All test 208 209 compounds were formulated as a 100 g/L emulsified concentrates by using DMF as solvent

and Tween-80 as emulsification reagent. The concentrates were diluted with water to obtain 210 the required concentration and applied to pot-grown plants in a greenhouse. Plastic pots 211 with a diameter of 7.5 cm were filled with soil to a depth of 5.6 cm containing 33.3% 212 213 garden soil and 66.7% nursery substrates. The seeds of the test plants were sown separately 214 according to species. Approximately 12 seeds of the tested weeds were sown in the soil at the depth of 0.2 cm and grown at 15-30 °C in a greenhouse. The diluted formulation 215 216 solutions were applied for pre-emergence treatment 24 h after the weeds were sown. For 217 post-emergence treatment, all weeds were treated at the 3-leaf stage. The pre- and post-emergence application rates were estimated as 150 g a.i./ha. Untreated seedlings were 218 used as the control group, and the solvent (DMF+Tween-80) treated seedlings were used as 219 220 the solvent control group. Herbicidal activity was evaluated visually 15-20 d post-treatment. The DMF+Tween-80 control displayed no herbicidal activity, and the results are reported in 221 Tables 2 and 3. 222

Evaluation was on a scale from 0 to 100, where 0 means no damage or normal growth and 100 means no emergence of the plants or complete destruction of at least the above-ground parts.

Herbicidal Activities Assay in Field Tests. The field tests were performed on the basis 226 227 of field efficacy trials of Chinese pesticide standards (GB/T17980.40-2000) in Hangzhou, China. The test weeds in the maize field were at 3-4 leaf stage and the maize were at 4-5 228 229 leaf stage. The controlling weeds comprised the following species: Eclipta prostrate, Amaranthus retroflexus, Portulaca oleracea, Digitaria sanguinalis, Eleusine indica, and 230 *Cyperus iria* in Hangzhou, China. The application rate for treatment was 18.75, 37.5, 75, 231 150 and 300 g a.i./ha (5c or 5e 5% EC (emulsifiable concentrate)). The application rate for 232 treatment of mesotrione which was used as the control was 75 and 150 g a.i./ha (mesotrione 233

234 9% SC (suspension concentrate)). Formulas used in these tests are as follows: Control 235 effect (%) = (the number of live weeds in the control area – the number of live weeds in the 236 treated area) / the number of live weeds in the control area × 100%. The results are reported 237 in Tables 4 and 5.

Herbicidal Spectrum Test. The herbicidal activities of the compounds 5c and 5e against
about 22 broadleaf weeds were evaluated according to the same procedure in a glasshouse.
Nicosulfuron was selected as a control. The post-emergence application rates was estimated
as 18.75 g a.i./ha. The results are reported in Table 6.

242 **Crop Selectivity.** The conventional three varieties of wheat and three varieties of maize were planted separately in pots (6.5 cm diameter) containing test soil with Amaranthus 243 244 retroflexus distributed evenly in it and grown in a greenhouse. After the plants reached the 3- or 4-leaf stage, the spraying treatment was conducted at different dosages. The visual 245 injury and growth state of the individual plants were observed at regular intervals. After 30 246 d, the herbicidal activity was visually investigated and the fresh weight inhibition rate was 247 248 determined. The ED_{10} values of the crops and the ED_{90} values of the weeds were calculated using DPS statistical software to obtain the selectivity coefficient between the crops and the 249 weeds. Formulas used in these tests are as follows: selectivity coefficient = the ED_{10} values 250 251 of the crops / the ED_{90} values of the weeds. The results are reported in Table 7.

252 **Results and discussion**

Synthetic Chemistry of the Title Compounds. As shown in Figures 2 and 3, all target compounds were prepared by a multistep synthetic route using substituted pyridines and phthalide as the starting materials. The reactions of the intermediates A and B, respectively, via nucleophilic substitution using DMF as the solvent afforded a range of novel compounds in considerable yields. The target compounds were characterized by NMR and 258 HRMS. All spectral and analytical data were consistent with the assigned structures.

Herbicidal Activity. As shown in Table 1, herbicidal activities assay in petri dish tests 259 indicate that some new compounds integrating a phenylpyridine moiety with 260 261 methoxyiminoacetate had a very good inhibitory activity on the growth of targets. 262 Furthermore, the kresoxim-methyl unit was necessary to maintain herbicidal activity. Thus, a series of target compounds were synthesized and evaluated for their herbicidal ability to 263 264 control the harmful weeds using pre- and post-emergence treatment in the glasshouse and 265 the field tests. For pre-emergence treatment in the glasshouse, some designed 266 kresoxim-methyl derivatives were compared to the commercial herbicide pyribambenz isopropyl. The post-emergence herbicidal activities of the rest compounds were tested in a 267 268 greenhouse against harmful weeds. The commercial herbicide mesotrione were selected as the control. As shown in Table 2, at 150 g a.i./ha, compounds **5b**, **5c** and **5e** showed 100% 269 inhibition against Abutilon theophrasti, Amaranthus retroflexus and Eclipta prostrata for 270 post-emergence treatment, and compounds 5n and 5p also showed greater than 80% 271 inhibition against these three broadleaf weeds. Furthermore, 5c exhibited excellent 272 273 herbicidal activity against all target weeds. The other compounds exhibited general herbicidal activity. Compounds **5b** and **5e** showed favourable herbicidal activity against the 274 275 other five target weeds except *Echinochloa crusgalli* for pre-emergence treatment.

According to further test results as shown in Table 3, at 37.5 g a.i./ha, the activity of **5c** showed nearly 100% inhibition against *Abutilon theophrasti*, *Amaranthus retroflexus* and *Eclipta prostrata*, which was slightly better than the activity of mesotrione at 150 g a.i./ha for post-emergence treatment. Similarly, **5e** also showed good herbicidal activity at 37.5 g a.i./ha for post-emergence treatment.

281

13

Based on the structural analysis of all new compounds, it was found that the herbicidal

activity of the compound was significantly improved when the benzene ring was attached to the 2-position of the pyridine ring. Furthermore, the compounds showed excellent herbicidal activity when substituted pyridine and active structure of trifloxystrobin were in the *para*-position of the benzene ring. Additionally, containing chloride or trifluoromethyl groups at the 3-position and 5-position on pyridine ring was essential for high herbicidal activity.

Herbicidal activity results in field test (Tables 4 and 5) showed that the herbicidal activity of **5c** and **5e** at 18.75-300 g a.i./ha against broadleaf weeds (*Amaranthus retroflexus*, *Eclipta prostrata*, and *Portulaca oleracea*) proved roughly equivalent to the control of 9% mesotrione SC at 75-150 g a.i./ha. However, the two test compounds had poor or no obvious control effect against Gramineae and Cyperaceae weeds, which were significantly lower than that of mesotrione at the same concentration.

Herbicidal Spectrum. 22 broadleaf weeds were selected for herbicidal test of 5c and 5e. Table 6 generally showed that the control effect of 5e was better than that of 5c at the dosage of 18.75 g a.i./ha, and they were all better than that of nicosulfuron. 5e had an excellent broad herbicidal spectrum against broadleaf weeds.

298 **Crop Selectivity.** Compounds **5c** and **5e** with promising herbicidal activity were chosen 299 as representatives for further crop selectivity studies. As shown in Table 7, **5c** and **5e** had a 300 certain selectivity between wheat/maize and *Amaranthus retroflexus*, which were better 301 than nicosulfuron in the wheat field, but slightly lower than nicosulfuron in the maize field. 302 There were also some differences among different wheat/maize varieties. Crop selectivity 303 studies indicated that **5c** and **5e** might be developed as a potential herbicide for wheat and 304 maize fields.

In summary, a series of new (pyridinylphenoxymethylene)phenyl methoxyiminoacetates 305 were designed and synthesized as potential herbicides. The result of in greenhouse and field 306 307 tests indicated that some newly synthesized compounds had good herbicidal activities at the 308 dosage of 37.5 g a.i./ha. Most interestingly, the activity of 5c and 5e against broadleaf weeds proved slightly better than mesotrione at 37.5 g a.i./ha. The herbicidal assay in field 309 tests in Hangzhou indicated that 5c and 5e had excellent herbicidal activities. Our results 310 311 suggest that 5c and 5e may be new candidates as potential herbicides. Acknowledgments 312

This work was financially supported by the National Key Research and Development Plan (2016YFD0300708).

The herbicidal activities assay of this work was completed by the Bioassay Testing and
Safety Assessment Center in Zhejiang Research Institute of Chemical Industry.

317 **References**

- 1. Sauter, H; Steglich, W; Anke, T. Strobilurins: evolution of a new class of active
- substances. Angew. Chem., Int. Ed. Engl. 1999, 38, 1329-1349.
- 2. Bartlett, D. W.; Clough, J. M.; Godwin, J. R.; Hall, A. A.; Hamer, M.; Parr-Dobrzanski, B.
- 321 The strobilurin fungicides. *Pest Manage. Sci.* **2002**, *58*, 649-662.
- 322 3. Fisher, N.; Meunier, B. Re-examination of inhibitor resistance conferred by Q_0 -site
- mutations in cytochrome b using yeast as a model system. *Pest Manage. Sci.* 2005, *61*,
- **324** 973-978.
- 4. Gisi, U.; Sierotzki, H.; Cook, A.; McCaffery, A. Mechanisms influencing the evolution of
- resistance to Q₀ inhibitor fungicides. *Pest Manage. Sci.* **2002**, *58*, 859-867.
- 5. Sierotzki, H.; Parisi, S.; Steinfeld, U.; Tenzer, I.; Poirey, S.; Gisi, U. Mode of resistance
- to respiration inhibitors at the cytochrome bc_1 complex of *Mycosphaerella fijiensis*. Pest
- 329 Manage. Sci. 2000, 56, 833-841.
- 6. Beautement, K.; Clough, J. M.; De Fraine, P. J.; Godfrey, C. R. A. Fungicidal
- 331 β -methoxyacrylates: From natural products to novel synthetic agricultural fungicides.
- 332 Pestic. Sci. 1991, 31, 499-519.
- 7. Jeschke, P. The unque role of fluorine in the design of active ingredients for modern crop
- 334 protection. *ChemBioChem* **2004**, *5*, 570-589.
- 8. Sauter, H.; Steglich, W.; Anke, T. Strobilurins: evolution of a new class of active
- substrances. Angew. Chem. Int. Ed. 1999, 38, 1329-1349.
- 9. Forsberg, J. H.; Spaziano, V. T.; Balasubramanian, T. M.; Liu, G. D.; Kinsley, S. A.;
- 338 Duckworth, C. A.; Poteruca, J. J.; Brown, P. S.; Miller, J. L. Use of lanthanid (III) ions as
- catalysts for the reactions of amine with nitriles. J. Org. Chem. 1987, 52, 1017-1021.
- 10. De Fraine, P. J.; Snell, B. K.; Clough, J. M.; Anthony, V. M.; Beautement, K.

- Heterocyclic compounds as fungicides. EP 206523, 1986.
- 11. Gayer, H.; Gerdes, P.; Kuhnt, D.; Dutzmann, S.; Dehne, H. W.; Haenssler, G.
- Preparation of pesticidal 2-(oximino)-2-(thienyl)acetic acid derivatives. WO 9501973,
- 344 1995.
- 12. Huang, W.; Zhao, P. L.; Liu, C. L.; Chen, Q.; Liu, Z. M.; Yang, G. F. Design, synthesis,
- and fungicidal activities of new strobilurin derivatives. J. Agric. Food Chem. 2007, 55,
- 347 3004-3010.
- 13. Hao, G. F.; Yang, S. G.; Huang, W.; Wang, L.; Shen, Y. Q.; Tu, W. L.; Li, H.; Huang, L.
- 349 S.; Wu, J. W.; Edward, A. B.; Yang, G. F. Rational design of highly potent and slow-binding
- cytochrome bc_1 inhibitor as fungicide by computational substitution optimization. *Sci. Rep.*
- **2015**, *5*, 13471.
- 14. Zhao, P. L.; Liu, C. L.; Huang, W.; Wang, Y. Z.; Yang, G. F. Synthesis and fungicidal
- evaluation of novel chalcone-based strobilurin analogues. J. Agric. Food Chem. 2007, 55,
- **354** 5697-5700.
- 355 15. Zhao, P. L.; Wang, F.; Zhang, M. Z.; Liu, Z. M.; Huang, W.; Yang, G. F. Synthesis,
- fungicidal, and insecticidal activities of β -methoxyacrylate-containing N-acetyl pyrazoline
- derivatives. J. Agric. Food Chem. 2008, 56, 10767-10773.
- 358 16. Zhao, P. L.; Wang, L.; Zhu, X. L.; Huang, X. Q.; Zhan, C. G.; Wu, J. W.; Yang, G. F.
- Subnanomolar inhibitor of cytochrome bc_1 complex designed by optimizing interaction
- with conformationally flexible residues. J. Am. Chem. Soc. 2010, 132, 185-194.
- 361 17. Hao, G. F.; Wang, F.; Li, H.; Zhu, X. L.; Yang, W. C.; Huang, L. S.; Wu, J. W.; Edward,
- A. B.; Yang, G. F. Computational discovery of picomolar Q_0 site inhibitors of cytochrome
- 363 *bc*₁ complex. *J. Am. Chem. Soc.* **2012**, *134*, 11168-11176.

- 18. Ziegler, H.; Neff, D.; Stutz, W. Preparation of 2-aryl-2-(methoxyimino)acetate esters via
- 365 palladium-catalyzed cross-coupling reaction of aryl boronic acid and
- 366 2-(methoxyimino)acetate esters. WO 9520569, 1995.
- 19. Wassilios, G.; Albrecht, H.; Hubert, S.; Beate, H.; Reinhard, D.; Eberhard, A.; Gisela, L.
- 368 Preparation of [(2-alkoximinoalkyl) phenyl] glyoxylate oximes and analogs as
- agrochemical fungicides. EP 499823, 1992.
- 20. Wenderoth, B.; Brand, S.; Schuetz, F.; Kuekenhoehner, T.; Roehl, F.; Ammermann, E.;
- 371 Lorenz, G. Preparation of (pyridinyloxy) phenylglyoxylate *O*-methyl oximes as
- agrochemical fungicides. DE 3835028, 1990.
- 21. Schaefer, P.; Hamprecht, G.; Puhl, M.; Westphalen, K. O.; Zagar, C. Synthesis and
- herbicidal activity of phenylpyridines-a new lead. *Chimia* **2003**, *57*, 715-719.
- 22. Schaefer, P.; Hamprecht, G.; Heistracher, E.; Koenig, H.; Klintz, R.; Muenster, P.; Rang,
- H.; Westphalen, K. O.; Gerber, M.; Walter, H. Preparation of substituted 2-phenylpyridine
- 377 herbicides. DE 4323916, 1995.
- 23. Xie, Y.; Chi, H. W.; Guan, A. Y., Liu, C. L.; Ma, H. J.; Cui, D. L. Design, synthesis, and
- herbicidal activity of novel substituted 3-(pyridin-2-yl) benzenesulfonamide derivatives. J.
- 380 Agric. Food Chem. 2014, 62, 12491-12496.
- 24. Mao, D. J.; Hu, C. B.; Liu, J. H.; Du, X. H.; Xu, Z. Y. Synthesis and fungicidal activity
- 382 of novel methoximinoacetates containing phenylpyridine moieties. *Chin. J. Pestic. Sci.*
- **2014**, *16*, 406-413.
- 25. Wang, W. W.; Liu, Z. F.; Du, X. H. Synthesis of 2-methyl chloride-α-methoxyl and
- amino benzene methyl acetate. *Agrochemicals* **2015**, *54*, 180-182.
- 26. Lu, C. J.; Liu, J. H.; Du, X. H. Synthesis of trifloxystrobin. Agrochemicals 2011, 50,
- **387 187-191**, **212**.

- 388 27. Chen, C. N.; Chen, Q.; Liu, Y. C.; Zhu, X. L.; Niu, C. W.; Xi, Z.; Yang, G. F. Syntheses
- and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid
- 390 synthase inhibitors. *Bioorg. Med. Chem.* **2010**, *18*, 4897-4904.
- 391 28. Chen, C. N.; Lv, L. L.; Ji, F. Q.; Chen, Q.; Xu, H.; Niu, C. W.; Xi, Z.; Yang, G. F.
- 392 Design and synthesis of
- N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo[1,5-a]pyrimidine-2-sulfonamide as
- acetohydroxyacid synthase inhibitor. *Bioorg. Med. Chem.* **2009**, *17*, 3011-3017.
- 29. Li, Y. X.; Luo, Y. P.; Xi, Z.; Niu, C. W.; He, Y. Z.; Yang, G. F. Design and syntheses of
- novel phthalazin-1(2*H*)-one derivatives as acetohydroxyacid synthase inhibitors. J. Agric.
- *Food Chem.* **2006**, *54*, 9135-9139.

398 Figure Captions

- **Figure 1.** Overview Synthetic Methods of Kresoxim-methyl Derivatives.
- 400 Figure 2. Synthetic Methods of Intermediate B.

Journal of Agricultural and Food Chemistry

Table 1. Chemical Structures and Herbicidal Activity Assay in Petri Dish Tests at the

Concentration of 100 mg/L.

$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $													
			Ι			II	[
No.	Ру	wh	leat	sorg	hum	barn gra	yard ass	cucu	mber	ra	pe	rad	lish
		root	stem	root	stem	root	stem	root	stem	root	stem	root	stem
I-1	3-(3-F-pyridin-2-yl)	0	0	0	0	0	0	0	0	30	30	0	0
II-1	3-(3-F-pyridin-2-yl)	0	0	80	80	80	80	50	50	0	0	50	0
I-2	3-(3-CF ₃ -pyridin-2-yl)	0	0	50	0	0	0	0	0	0	0	0	0
II-2	3-(3-CF ₃ -pyridin-2-yl)	50	50	80	50	80	80	30	0	80	40	80	50
I-3	4-(3-CF ₃ -pyridin-2-yl)	0	0	0	0	0	0	0	0	0	0	0	0
II-3	4-(3-CF ₃ -pyridin-2-yl)	0	0	0	0	0	0	0	0	80	80	80	50
I-4	3-(3-Cl-5-CF ₃ -pyridin-2-yl)	0	0	0	0	30	30	30	0	0	0	0	0
II-4	3-(3-Cl-5-CF ₃ -pyridin-2-yl)	50	20	100	100	100	95	95	95	100	100	100	100
I-5	4-(3,5-Cl ₂ -pyridin-2-yl)	0	0	0	0	30	30	30	0	30	0	0	0
II-5	4-(3,5-Cl ₂ -pyridin-2-yl)	50	0	100	100	100	100	100	100	100	100	100	100

Table 2. Chemical Structures and Herbicidal Activity of Kresoxim-methyl Derivatives by

Pre- and Post-emergence Treatment in Glasshouse Tests at the Dosage of 150 g a.i./ha.

		P	^U ∕∕∕H ₃ C ^O ∕∕ [−] N ^{−C}	⁾ ∕CH₃			
			<u> </u>	F 1:	D · · · ·	F 1 · 11	<u> </u>
No.	Py	Abutilon	Amaranthus	Eclipta	Digitaria	Echinochloa	Setaria
		theophrasti	retroflexus	prostrata	sanguinalis	crusgalli	viridis
Post-	-emergence Treatment			•			
5a	2-(3-Cl-5-CF ₃ -pyridin-2-yl)	0	0	30	0	0	0
5b	3-(3-Cl-5-CF ₃ -pyridin-2-yl)	100	100	100	0	0	0
5c	4-(3-Cl-5-CF ₃ -pyridin-2-yl)	100	100	100	95	100	90
5d	$3-(3,5-Cl_2-pyridin-2-yl)$	0	90	90	30	30	30
5e	$4-(3,5-Cl_2-pyridin-2-yl)$	100	100	100	0	0	0
5f	3-(5-Cl-3-F-pyridin-2-yl)	0	90	80	30	30	30
5g	4-(5-Cl-3-F-pyridin-2-yl)	0	100	90	0	30	30
5h	$3-(3,5-Me_2-pyridin-2-yl)$	0	0	30	0	0	0
5i	$4-(3,5-Me_2-pyridin-2-yl)$	0	50	30	0	0	0
5j	3-(3-Br-5-Me-pyridin-2-yl)	0	30	30	0	30	30
5k	4-(3-Br-5-Me-pyridin-2-yl)	0	50	0	0	0	0
51	2-(5-Cl-3-Me-pyridin-2-yl)	0	0	0	0	0	0
5m	3-(5-Cl-3-Me-pyridin-2-yl)	0	30	30	0	0	0
5n	4-(5-Cl-3-Me-pyridin-2-yl)	80	100	90	30	30	30
50	3-(5-Br-3-Me-pyridin-2-yl)	0	30	30	0	0	0
5p	4-(5-Br-3-Me-pyridin-2-yl)	100	100	90	30	30	30
	Mesotrione	95	100	100	80	85	80
Pre-e	emergence Treatment						
5a	2-(3-Cl-5-CF ₃ -pyridin-2-yl)	0	0	0	0	0	0
5b	3-(3-Cl-5-CF ₃ -pyridin-2-yl)	100	100	85	80	0	50
5c	4-(3-Cl-5-CF ₃ -pyridin-2-yl)	0	50	0	0	30	0
5d	$3-(3,5-Cl_2-pyridin-2-yl)$	0	0	0	0	0	0
5e	$4-(3,5-Cl_2-pyridin-2-yl)$	100	100	100	50	0	50
5 f	3-(5-Cl-3-F-pyridin-2-yl)	0	100	0	0	0	0
5g	4-(5-Cl-3-F-pyridin-2-yl)	0	0	0	0	0	0
5h	3-(3,5-Me ₂ -pyridin-2-yl)	0	90	0	0	0	0
5i	4-(3,5-Me ₂ -pyridin-2-yl)	0	0	0	0	0	0
5j	3-(3-Br-5-Me-pyridin-2-yl)	0	0	0	0	0	0
5k	4-(3-Br-5-Me-pyridin-2-yl)	0	0	0	0	0	0
51	2-(5-Cl-3-Me-pyridin-2-yl)	0	0	0	0	0	0
5m	3-(5-Cl-3-Me-pyridin-2-yl)	0	90	0	0	0	0
5n	4-(5-Cl-3-Me-pyridin-2-yl)	0	0	0	0	0	0
50	3-(5-Br-3-Me-pyridin-2-yl)	0	80	0	0	0	0
5p	4-(5-Br-3-Me-pyridin-2-yl)	0	100	90	50	50	50
l	Pyribambenz isopropyl	100	95	75	97.5	97.5	97.5

Table 3. Herbicidal Activity of the Selected Compounds by Pre- and Post-emergence

No	Dosage	Abutilon	Amaranthus	Eclipta	Digitaria	Echinochloa	Setaria
INO.	g a.i./ha	theophrasti	retroflexus	prostrata	sanguinalis	crusgalli	viridis
Post-emergence	Treatment						
	37.5	30	100	97.5	0	0	0
5b	75	60	100	100	0	0	0
	150	100	100	100	0	0	0
	37.5	100	100	100	50	50	50
5c	75	100	100	100	60	60	50
	150	100	100	100	95	100	90
	37.5	100	100	97.5	0	0	0
5e	75	100	100	100	0	0	0
	150	100	100	100	0	0	0
	37.5	30	70	40	30	20	20
5n	75	50	90	50	40	30	30
	150	80	100	90	50	40	40
	37.5	50	60	40	20	20	20
5p	75	60	70	50	30	30	30
-	150	100	100	90	30	30	30
Mesotrione	150	95	100	100	80	85	80
Pre-emergence	Treatment						
	37.5	0	0	0	0	0	0
5b	75	0	15	0	0	0	0
	150	100	100	85	80	0	50
	37.5	0	20	0	0	0	0
5e	75	0	30	0	0	0	0
	150	100	100	100	50	0	50
Pyribambenz isopropyl	150	100	95	75	97.5	97.5	97.5

Treatment in Glasshouse Tests.

Management	Dosage g a.i./ha	Amaranthus retroflexus	Eclipta prostrata	Portulaca oleracea	Digitaria sanguinalis	Eleusine indica	Cyperus iria	Total
	18.75	74.3	73.4	75.0	13.2	8.0	6.6	39.9
	37.5	84.2	81.3	82.7	17.6	14.0	13.2	47.1
5c (5% EC)	75	89.1	87.5	88.5	22.1	20.0	17.4	52.2
	150	94.1	93.8	94.2	35.3	32.0	27.3	60.7
	300	98.0	96.9	98.1	48.5	42.0	38.0	68.4
	18.75	73.3	71.9	73.1	1.5	0.0	-2.5	34.2
	37.5	80.2	78.1	80.8	2.9	2.0	-1.7	38.2
5e (5% EC)	75	83.2	81.3	88.5	7.4	4.0	0.8	41.7
	150	90.1	87.5	92.3	10.3	6.0	1.7	45.4
	300	93.1	90.6	96.2	13.2	8.0	2.5	47.8
Mesotrione	75	97.0	95.3	96.2	67.6	62.0	39.7	73.2
(9% SC)	150	100.0	100.0	100.0	82.4	78.0	54.5	82.9

Table 4. Herbicidal Activity of 5c and 5e in Maize Field Tests (after 20 d).

Management	Dosage	Amaranthus	Eclipta	Portulaca	Digitaria	Eleusine	Cyperus	Total
Management	g a.i./ha	retroflexus	prostrata	oleracea	sanguinalis	indica	iria	Total
	18.75	75.1	74.1	78.3	11.6	7.7	6.7	39.1
	37.5	83.5	81.7	85.0	16.4	12.4	13.0	45.6
5c (5% EC)	75	89.6	86.9	90.3	19.1	18.1	17.3	50.7
	150	93.9	93.4	94.9	30.0	32.6	27.1	58.7
	300	99.2	97.0	98.2	43.7	42.8	37.3	66.9
	18.75	72.1	70.9	72.9	-0.4	-1.5	-4.3	31.5
	37.5	78.9	77.1	79.8	-0.7	-2.3	-2.9	34.8
5e (5% EC)	75	82.7	82.0	88.5	0.9	-1.9	-1.6	37.9
	150	89.9	86.3	91.9	1.6	0.0	-1.0	41.0
	300	93.1	91.7	95.9	3.9	1.5	-0.1	43.5
Mesotrione	75	98.3	98.1	96.9	68.2	62.5	39.4	72.9
(9% SC)	150	100.0	100.0	100.0	81.6	77.9	54.6	81.9

Table 5. Herbicidal Activity of 5c and 5e in Maize Field Tests (after 30 d).

Weeds	5c	5e	Nicosulfuron
Pharbitis nil	80	50	50
Cassia tora	90	80	50
Commelina bengalensis	82.5	80	50
Bidens pilosa	100	75	70
Abutilon theophrasti	90	100	40
Eclipta prostrata	100	100	80
Xanthium sibiricum	90	100	80
Phytolacca americana	90	95	80
Bidens tripartita	70	90	80
Nicandra physaloides	90	100	80
Solanum nigrum	40	100	100
Amaranthus spinosus	40	85	30
Amaranthus retroflexus	80	85	80
Portulaca oleracea	100	100	30
Clinopodium chinense	70	70	60
Boehmeria nivea	40	50	70
Sonchus asper	90	100	50
Carpesium abrotanoides	70	80	60
Monochoria vaginalis	30	70	30
Ammannia baccifera	50	80	30
Ammannia arenaria	50	80	30
Aster tataricus	40	85	30

Table 6. Herbicidal Spectrum Test of 5c and 5e at the Concentration of 18.75 g a.i./ha.

No.	target	correlation	ED ₉₀ gai/ha	ED ₁₀ g a i /ha	selectivity
	Amaranthus retroflexus	0.9806	14.3		-
	Wheat 1 (Jimai 22)	0.9872	-	79.4	5.6
	Wheat 2 (Yangmai 158)	0.9447	-	151.5	10.6
5c	Wheat 3 (Tainong 18)	0.9939	-	86.9	6.1
	Maize 1 (Huyunuo 3)	0.9915	-	104.7	7.3
	Maize 2 (Nongda 108)	0.9880	-	148.8	10.4
	Maize 3 (Chaotian 3)	0.9613	-	120.8	8.5
	Amaranthus retroflexus	0.9797	12.9	-	-
	Wheat 1 (Jimai 22)	0.9813	-	106.0	8.2
	Wheat 2 (Yangmai 158)	0.9175	-	207.4	16.0
5e	Wheat 3 (Tainong 18)	0.9904	-	92.4	7.1
	Maize 1 (Huyunuo 3)	0.9971	-	102.5	7.9
	Maize 2 (Nongda 108)	0.9843	-	148.3	11.5
	Maize 3 (Chaotian 3)	0.9729	-	139.7	10.8
	Amaranthus retroflexus	0.9896	23.7	-	-
	Wheat 1 (Jimai 22)	0.9908	-	16.3	0.7
	Wheat 2 (Yangmai 158)	0.9906	-	97.5	4.1
Nicosulfuron	Wheat 3 (Tainong 18)	0.9979	-	45.7	1.9
	Maize 1 (Huyunuo 3)	0.9747	-	347.1	14.6
	Maize 2 (Nongda 108)	0.6699	-	975.4	41.1
	Maize 3 (Chaotian 3)	0.8504	-	467.5	19.7

 Table 7. Crop Selectivity between Wheat/Maize and Amaranthus retroflexus.

Figure 1.

Figure 2.

Table of Contents Graphic

