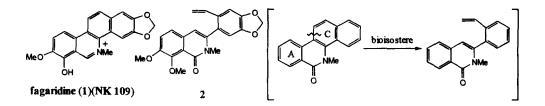


Bioorganic & Medicinal Chemistry Letters 8 (1998) 41-46

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

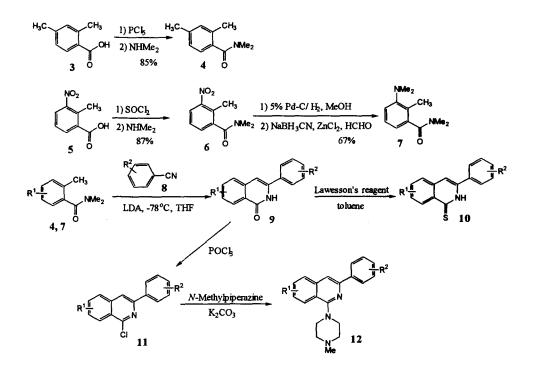
SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYLISOQUINOLINES AS ANTITUMOR AGENTS


Won-Jea Cho,*¹ Myun-Ji Park, ¹ Byung-Ho Chung, ¹ Chong-Ok Lee² ¹College of Pharmacy, Chonnam National University, Yong-Bong dong, Buk-gu, Kwangju 500-757 Korea, ² Screening Center of Korea Research Institute of Chemical Technology, DaeJeon, Korea

Received 16 September 1997; accepted 7 November 1997

Abstract: To investigate the structure-activity relationship of 7,8-dimethoxy-2-methyl-3-(4,5methylenedioxy-2-vinylphenyl)isoquinolin-1(2H)-one 2, diverse substituted 3-arylisoquinolines were synthesized and tested *in vitro* antitumor activity against five human tumor cell lines. The results showed a broad antitumor spectrum for a series of 3-arylisoquinolines. © 1997 Elsevier Science Ltd. All rights reserved.

Introduction


With the clinical success of fagaridine $1,^{1,2}$ which is a natural phenolic benzo[c]phenanthridine alkaloid, considerable attention has been directed towards the synthesis and biological evaluation of related compounds.³⁻⁵ Although synthetic procedures for the preparation of benzo[c]phenanthridines have been reported, most of them suffer from certain problems in synthesizing of diverse substituted benzo[c]phenanthridines.⁶ For this reason, structure-activity relationship studies of these compounds have been limited. During the course of our research in phenolic benzo[c]phenanthridines, a strong antitumor agent 7,8-dimethoxy-2-methyl-3-(4,5-methylenedioxy-2-vinylphenyl)isoquinolin-1(2H)-one 2 (IC₅₀ = 0.2 nM : SKMEL-2) was discovered.^{7,8} This styrene compound is considered to be a bioisostere of benzo[c]phenanthridine via its C-C bond cleavage of the aromatic C ring.⁹ As an alternative route to the development of new antitumor agents, we decided to do a

0960-894X/98/\$19.00 © 1997 Elsevier Science Ltd. All rights reserved. *Pll*: S0960-894X(97)10190-1 SAR study of 3-arylisoquinolines using the styrene 2 as a lead compound. For the systematic pharmacophore study of 2, we tried to introduce various substituents (hydrophobic, hydrophilic, electronic) on the two aromatic rings of 3-arylisoquinolines. In order to enhance the water solubility of these compounds, the amide group was designed to be converted to N-methyl-piperazinyl group which could retain the hydrogen bonding ability of amide ketone. This paper describes the efficient synthesis of 3-arylisoquinoline derivatives as well as a putative pharmacophore model of these compounds.

Synthesis

3-Nitro-2-methylbenzoic acid 5 was reacted with thionyl chloride, followed by treatment with 40% dimethylamine to afford the amide 6. The catalytic hydrogenation of 6 and consecutive dimethylation with NaBH₃CN and HCHO yielded the desired amide 7. For the efficient synthesis of 3-arylisoquinolines, we used one pot synthetic pathway developed by Poindexter.¹⁰

Scheme I. Synthesis of 3-Arylisoquinoline Derivatives

Compd	Substitution		Yield	A549	SK-OV-	SK-	XF498	HCT 15
	RI	R2	(%)		3	MEL-2		
9a	H	Н	43	5.75	2.45	2.57	5.89	1.38
9b	Н	^{3,4} -OCH ₂ O	37	na	77.62	25.11	17.78	2.69
9c	Н	4-CF ₃	40	na	87.28	na	na	na
9d	Н	4-Me	57	30.20	13.80	5.01	42.66	7.08
9e	6-Me	Н	52	1.32	1.70	1.58	5.13	0.76
9f	6-Me	2-Me	54	5.89	4.27	2.63	30.90	1.99
9g	6-Me	4-Me	55	5.62	4.90	7.76	35.48	11.22
9h	6-Me	4-Cl	47	5.75	6.03	6.31	38.90	11.22
9i	5-NMe ₂	Н	62	na	na	na	na	na
9j	5-NMe ₂	4-Me	65	na	na	na	na	na
9k	5-NMe ₂	4-Br	62	na	na	na	na	na
91	5-NMe ₂	4-OMe	53	na	na	na	na	na
10a	Н	Н	78	na	na	na	na	na
10b	Н	4-OMe	82	na	na	na	83.18	na
10c	6-Me	Н	54	10.96	56.23	25.12	41.89	75.8 6
10d	6-Me	Н	67	8.51	34.67	19.50	19.05	9.12
12a	H	н	95	25.12	22.38	11.75	37.15	18.62
12b	6-Me	4-OMe	88	7.41	7.94	3.71	9.33	7.41
12c	6-Me	4-Cl	78	3.19	5.75	2.40	6.03	4.07
12 d	6-Me	4-Me	72	7.24	7.08	2.40	8.32	4.47
12e	6-Me	2-Me	81	7.59	5.13	3.38	77.62	6.61
12f	5-NMe ₂	4-Cl	85	7.45	7.56	4.30	7.98	7.30
12g	5-NMe ₂	4-OMe	57	1.82	13.18	3.98	6.17	10.72

Table I. Cytotoxicity and Synthetic Yield of 3-Arylisoquinolines (µ mole)

na represents not active (> 100 µmole)

Fagaridine (NK 109)

5-NMe₂ H

12h

1

Tumor cell lines : A 549 (human lung), SKOV-3 (human ovarian), SK-MEL-2 (human melanoma), HCT 15 (human colon), XF 498 (human CNS)

10.00

1.02

11.22

1.35

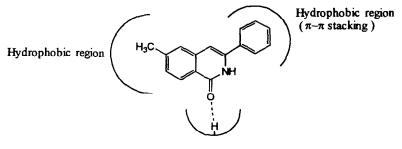
7.08

2.75

19.95

1.12

9.55


1.12

58

o-Toluamides 4,7 were reacted with two equivalent of LDA at 0°C to form anions which were then treated with benzonitriles 8 to afford the corresponding amides 9. The thioketones 10 were prepared with Lawesson's reagent in refluxing toluene.¹¹ The amides 9 were reacted with POCl₃ to give chloroimines 11 in good yield which were then transformed to 1-(4-methylpiperazinyl)isoquinolines 12 as shown in Scheme I.

Biological Discussion

The cytotoxicity experiment of the synthesized compounds ¹² were performed in vitro against five human cell lines such as A 549 (lung), SKOV-3 (ovarian), SK-MEL-2 (melanoma), XF 498 (CNS) and HCT 15 (colon) using sulforhodamine B (SRB) assay.^{13, 14} Unsubstituted amides 9a exhibited 5 to 35 times stronger activity than the amides of substituted B ring 9b-9d in SK-OV-3 cell line. 6-Methyl amide 9e displayed a potency increase, 4 times stronger than the unsubstituted compounds 9a in A-549 cell line. This result indicates that the methyl group on A ring seemed to significantly affect the level of activity. On the other hand, the dimethylamino compounds 9i-9l did not show much activity. When we replaced the amide carbonyl with thioketone, the activity decreased dramatically. However, the piperazinyl substituted compounds 12a-12h displayed broad antitumor activity against most cell lines regardless of the substitution on A ring or B ring. To determine the reason for this activity difference between amide and thioamide compounds, we calculated the atomic charge which is important for hydrogen bonding ability of amide carbonyl (-0.274). thioketone (-0.065) and piperazinyl nitrogen (-0.256) using Gasteiger method.¹⁵ The results strongly indicate that these compounds have three important binding sites for the receptor, two hydrophobic regions of aromatic A and B ring and one hydrogen bonding region. Accordingly, a pharmacophore model of 3-arylisoquinolines was postulated as shown in figure I.¹⁶ Compounds 12a, a representative water soluble piperazinyl analogue, was tested in vivo assay using BDF1 mouse (P 388 leukemia) and resulted in 160 T/C %. 17

Hydrogen bonding

Figure I. Schematic Representation of Proposed Pharmacophore Model of 3-Arylisoquinolines

In summary, novel antitumor 3-arylisoquinoline derivatives were developed as plausible antitumor agents, which showed comparable activity as fagaridine (NK 109, 1) ¹⁸ but could not exceed the lead compound 2. A study of the function of vinyl moiety and other substitutions on 2 is in progress.

Acknowledgement

The financial support from the Ministry of Health & Welfare (1995-1997) of Korea is greatly appreciated.

References and Notes

- 1. Suzuki, M., Nakanishi, T., Kogawa, O., Ishikawa, K., Kobayashi, F., Ikimoto, H., *EP* 487930, 1992; *Chem. Abstr.* 1992, 191706.
- Kobayashi, F., Yokimoto, H., Suzuki, M., Tsubuki, M., Jpn. Kokai Tokkyo Koho JP 04364128, 1992.
- 3. Janin, Y. L., Croisy, A., Riou, J. -F., and Bisagni, E., J. Med. Chem., 1993, 36, 3686-3692.
- 4. Behrens, C. H., US Patent 4942163, 1990.
- 5. Fang, S. -D., Wang, L.-K., and Hecht, S. M., J. Org. Chem., 1993, 58, 5025-5027.
- Mackay, S. P., Meth-Cohn, O., Waich, R. D., Advances in Heterocyclic Chemistry, Katritzky, A. R., Ed.; Academic Press, 1997; Vol. 67, pp 345-389.
- Cho, W. -J., Yoo, S. -J., Chung, B.-H., Cheon, S. H., Whang, S. -H., Kim, S. -K., Kang, B.-H., Lee, C. -O., Arch. Pharm. Res., 1996, 19, 321-325.
- A first synthesis of this compound: Onda, M., and Yamaguchi, H., Chem. Pharm. Bull., 1979, 27, 2076-2083.
- 9. Thornber, C. W., Chem. Soc. Res., 1979, 8, 563.
- 10. Poindexter, G. S., J. Org. Chem., 1982, 47, 3787-3788.
- 11. Cava, M. P., and Levinson, M. I., Tetrahedron, 1985, 41, 5061-5087.
- All Synthesized compounds were fully characterized by spectroscopy. Selected data for key compounds : Compound 9g : mp 250-251°C, ¹H-NMR (300MHz) : 10.05 (1H, s, NH), 8.28 (1H, d, J=8.4Hz, C₈-H), 7.62 (2H, d, J=8.0Hz, aromatic), 7.31 (2H, d, J=8.0Hz, aromatic), 7.36-7.26 (2H, m, aromatic), 6.69 (1H, s, C₄-H), 2.49, 2.42 (each 3H, s, CH₃). IR (KBr) (cm ⁻¹): 1650 (amide). MS, m/z (%): 249 (M⁺, 100), 219 (33), 169 (36), 149 (69). 12f: oil. ¹H-NMR (300MHz): 8.13 (2H, d, J=8.7Hz, aromatic), 8.03 (1H, s, C₄-H), 7.70 (1H, d, J=8.1Hz, C₈-H), 7.42 (2H, d, J=8.7Hz, aromatic), 7.39-7.33 (1H, m, C₇-H), 7.12 (1H, d, J=7.5Hz, C₆-H), 3.58 (4H, t, J=4.5Hz, -N-CH₂-CH₂-N-Me), 2.91 (6H, s, NMe₂), 2.73 (4H, t, J=4.5Hz, -N-CH₂-CH₂-N-Me), 2.31 (M⁺, 15), 313 (27), 310 (75), 297 (100).
- Rubinstein, L. V., Shoemaker, R. H., Paull, K. D., Simon, R. M., Tosini, S., Skehan, P., Scudiero, D., A., Monks, A., and Boyd, M. R., *J. Natl. Cancer Inst.*, 1990, 82, 1113-1118.

- Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R., J. Natl. Cancer Inst., 1990, 82, 1107-1112.
- Charge calculation was performed using Gasteiger method in the Sybyl program (Version 6.3) supplied by Tripos Associates, 1699 South Hanley Road, Suite 303, St. Louis, Missouri 63144, USA.
- 16. The result of comparative molecular field analysis (CoMFA), three dimensional quantitative structure-activity relationship study, of 3-arylisoquinolines indicated that the above pharamcophore model showed quite a good correlation with the contour map derived from this computational analysis. This CoMFA result will be reported soon elsewhere.
- 17. For testing *in vivo* assay of the representative compound **12a**, female BDF1 mice were inoculated IP with P 388 leukemia cells (10 controls and 6 animals in each test group), and the test compound was injected intraperitoneally as 0.2 mL solutions (PBS) at 1, 3, 5, 7 and 9 days after leukemia inoculation. T/C is expressed as the ratio of the median survival time of treated animals to the median control time multiplied by 100.
- 18. The mode of action of fagaridine (NK 109, 1) developed in Nippon Kayaku in Japan in known as topoisomerase II inhibitor. The synthesized 3-arylisoquinolines are under estimation of topoisomerase inhibition activity.