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active species. Most importantly, the catalytic activities 
towards ethylene (co)polymerization as well as comonomer 
incorporation ratios were much higher than that of the cor-
responding mononuclear complexes. Meanwhile, the prop-
erties of polymers and the comonomer incorporation ratios 
can be effectively tuned by the reaction conditions and the 
alkylthio side group on ligands. Complex Ti2c bearing the 
long octylthio sidearm showed significantly higher activity 
for ethylene polymerization than the methylthio functional-
ized Ti2a, presumably due to the increased solubility of the 
catalyst in the reaction medium. While for copolymeriza-
tion, complex Ti2a demonstrated the highest catalytic activ-
ity and comonomer incorporation ratio, due the small steric 
hindrance of the methylthio side group.

Abstract A series of methylene-bridged salicylaldimi-
nato tridentate [ONS] ligands bearing different alkylthio 
sidearms and the corresponding binuclear titanium com-
plexes (Ti2a, Ti2b, Ti2c) were synthesized and characterized 
by elemental analysis, ESI-MS, FT IR, 1H and 13C NMR. 
To the best of our knowledge, these were the first non-met-
allocene tridentate binuclear Ti complexes reported. When 
activated by modified methylaluminoxane (MMAO), these 
binuclear Ti complexes displayed extremely high activities 
in the range of  106 g mol−1 h−1 atm−1 for ethylene polym-
erization and ethylene/α-olefins copolymerization at atmos-
pheric pressure, producing high molecular weight polymers 
with narrow polydispersity. Both the catalytic behavior and 
the spectroscopic characterization indicated that the cata-
lysts assumed symmetric structure and contained single-site 
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1 Introduction

Polyolefins are presently the most important and the most 
produced synthetic polymers and are used in everything 
from packaging to automotive and electrical components, 
to lubricants and artificial limbs. Historically, polyolefins 
were produced using ill-defined but highly active Zie-
gler–Natta catalyst composed of supported metal halides 
(typically  MgCl2-supported  TiCl4, which still dominates 
the market) activated by aluminum alkyls [1]. Begin-
ning in the 1990s, following the great success of Kamin-
sky’s metallocene catalysts [2], significant efforts have 
been directed toward the development and application of 
catalysts with various non-metallocene ligands such as 
diamide, β-diketiminates, iminopyrrolides, amidinates, 
diimine, alkoxide, aryl oxide, and phenoxyimine [3–24]. 
These single site molecular catalysts were far better 
defined and more tunable in terms of structure, activity 
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and selectivity, and the explosion of research advances 
have led to deeper mechanistic understanding of the cata-
lytic system and production of polyolefin materials with 
well-defined microstructure and high performance.

Among the non-metallocene candidates, phenoxy-
imine group 4 transition metal complexes developed by 
Fujita and co-workers, the so called FI catalyst, exhib-
ited high performances in both catalytic activity and ste-
reoregularity control in olefin polymerization [12–17]. 
Nevertheless, these FI catalysts required the use of large 
amount of cocatalyst and showed weak copolymerization 
capacities for ethylene and other olefins bearing steric 
hindrance groups due to the crowded coordination envi-
ronment of bis-ligation. Tang et al. have introduced some 
sidearms with weak coordination capacity and developed 
a series of mono-ligated tridentate [ONX]  TiCl3 com-
plexes, where X=O, S, Se, and P [25–30], and found 
that the catalytic performances were highly dependent 
on the type and the steric effect of the ancillary side-
arm. The complexes bearing the S–Ar/R sidearm were 
highly active for ethylene polymerization and copoly-
merization, and showed good capability to incorporate 
comonomers due partly to the open coordination envi-
ronment. In addition, the activity is not much diminished 
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even when the amount of MMAO is fairly low (Al/Ti 
ratio = 100) [27]. Compared with the bis-ligated biden-
tate complexes, these mono-ligated tridentate complexes 
were highly stable and could be prepared in one step by 
simply mixing the tridentate ligands and titanium tetra-
chloride, without the need to deprotonate the ligands in 
advance.

Since 2000s, there have also been growing interests in 
binuclear and multinuclear complexes for olefin polymeriza-
tion [31–54]. As compared to the mononuclear analogues, 
it was shown that introduction of a proximate metal center 
could significantly enhance catalytic activity, modify polyole-
fin molecular weight, branch structure, and increase comono-
mer enchainment selectivity as a result of the cooperative 
effects between adjacent catalytic centers. Heterobimetallic 
catalysts are also capable of producing LLDPE with ethyl-
ene as the sole feed [39, 41, 53]. However, compared with 
the mononuclear complexes, the research on the design and 
synthesis, and the catalytic performance and mechanism for 
binuclear complexes is far from enough. Most of these works 
were focused on metallocene and late transition metal com-
plexes, while non-metallocene early transition metal binu-
clear complexes have rarely been reported, due probably to 
the difficulty in synthesis.

Marks’ group systematically studied a series of binu-
clear catalysts, including metallocene and late transition 
metal complexes, and found that the binuclear catalysts were 
more efficient in terms of activity and commoner inser-
tion than their mononuclear analogues [31–41]. Recently 
they also reported a class of early transition bimetallic cata-
lysts (as shown below, I) [35]. However, the salicylaldimine 
ligated mononuclear complexes demonstrated low activity 
(~103 g mol−1 h−1 atm−1), whilst the binuclear analogue dem-
onstrated moderate activity (~104  g  mol−1  h−1  atm−1). Ma 
Yuguo et al. lately reported a bidentate salicylaldimine het-
eroligated binuclear Ti(IV) catalyst (shown below, II) with 
high activity (over  106 g mol−1 h−1 atm−1), yet the synthesis 
was very tedious [54].

Thus, in order to take the advantage of the open coordi-
nation environment of tridentate ligands and the coopera-
tive effect of binuclear complexes, we tethered a series of 
tridentate [ONS] salicylaldiminato ligands bearing various 
S–R (R = methyl, propyl, octyl) sidearms with a methyl-
ene group and prepared the corresponding Ti complexes. 
To the best of our knowledge, these are the first non-met-
allocene tridentate binuclear Ti complexes reported. The 
structures of the ligands and complexes were character-
ized by spectroscopic techniques and elemental analysis, 
and the catalytic performances for ethylene homo- and 
co-polymerization were investigated. High activities over 
 106 g mol−1 h−1 atm−1 were obtained. Meanwhile, the binu-
clear catalysts showed 28% increase of activity for ethylene 
polymerization and significantly increased enchainment 
of α-olefins such as 1-hexene and 1-octene as compared 
with the mononuclear analogues, clearly demonstrating the 
cooperativity between the two metal centers.

2  Experimental Section

2.1  Materials and Characterization

All manipulations involving air- and/or moisture-sensi-
tive compounds were performed under dry nitrogen using 
standard Schlenk-line and glovebox. Toluene and hex-
ane were purified by distillation over sodium/benzophe-
none ketyl, while  CH2Cl2 was refluxed over  CaH2. Gases 
and other solvents were purified by standard techniques. 
Modified methylaluminoxane (MMAO) was purchased 
from Akzo Chemical as a 7  wt.% solution in heptane. 
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All other chemical reagents were used as received unless 
noted otherwise. Compounds 2, 3, alkylthio anilines and 
mononuclear Ti complex Ti1

c (Scheme  1) were synthe-
sized according to the literature [29].

1H and 13C NMR spectra of ligands and complexes 
were recorded on a Bruker Avance III 400 MHz spectrom-
eter with tetramethylsilane as an internal standard. Ele-
mental analyses were carried out using Vario EL 111. 13C 
NMR spectra of polymers were obtained on a Varian XL 
300  MHz spectrometer at 120 °C with o-C6D4Cl2 as the 
solvent. IR spectra were collected with a Nicolet Nexus 
470 Fourier transform infrared (FTIR) spectrometer. Mass 
spectra were measured by an Agilent ESI-Q-TOF MS 
6520 instrument. DSC measurements were performed 
on a Netzsch DSC200 F3 instrument at a heating rate 
of 10 °C/min from 20 to 160 °C, with the melting points 
obtained from the endothermic peak of the second heating 
scan. The Mn and Mw/Mn of the polymers were determined 
at 150 °C with a Viscotek 350A HT-GPC System using 
a polystyrene calibration. 1,2,4-Trichlorobenzene was 
employed as the solvent at a flow rate of 1.0 mL min−1.

2.2  Ethylene Polymerization and Copolymerization

A flame-dried Schlenk flask purged with  N2 was filled 
with ethylene gas. 30  mL of freshly distilled toluene was 
added and raised to the reaction temperature for 10  min. 
MMAO was then injected using a syringe and the mixture 
was stirred for 5 min. The polymerization was initiated by 
adding a solution of the titanium complex in toluene with 
a syringe. After a desired time, the polymerization was 
quenched with acidified ethanol (100 mL, 8 vol.% HCl in 
ethanol). The precipitated polymer was filtered off, washed 
with ethanol, then dried under vacuum overnight at 60 °C 
till a constant weight. For copolymerization, α-olefins 
(1-hexene, 1-octene) and MMAO were injected in sequence 
via a syringe.

2.3  Synthesis of the Ligands and Binuclear Titanium 
Complexes

The synthesis of the methylene-bridged salicylaldiminato 
tridentate [ONS] ligands La–Lc and the corresponding 
binuclear Ti complexes Ti2a–Ti2c is shown in Scheme 2.

2.3.1  Synthesis of the Methylene‑Bridged 
Salicylaldiminato Tridentate [ONS] Ligands (La, Lb 
and Lc)

To a 100 mL 3-neck flask were added 0.92 g (2.5 mmol) of 
3, 0.695 g (5 mmol) of methylthio aniline, 30 mL of etha-
nol, and 0.31 mL of formic acid, and heated to reflux for 
12  h. The mixture was then vacuum dried, and recrystal-
lized with ethanol to afford La as a yellow solid (1.2 g, 80% 
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yield). 1H NMR (400 MHz, ppm,  CDCl3): δ13.46 (s, 2H, 
OH), 8.56 (s, 2H, N=CH), 7.0–7.27 (m, 12H, ArH), 3.91 
(s, 2H,  CH2), 2.47 (s, 6H,  CH3), 1.47 (s, 18H, C(CH3)3). 
13C NMR (101  MHz,  CDCl3): δ 162.8 (CH=N), 159.0, 
145.8, 137.9, 134.7, 131.5, 130.6, 130.4, 127.2, 125.3, 
124.9, 119.0, 117.4 (Ar–C), 40.4, 35.0, 29.4, 14.8. ESI-MS 
[m/z (%)]: 611 (100)  [M+]. Anal. Calcd for  C37H42N2O2S2: 
C, 72.75; H, 6.93; N, 4.59%. Found: C, 72.88; H, 6.46; N, 
4.25%. IR (KBr,  cm−1): 2957, 2917, 1614, 1566, 1437, 
1266, 1203, 1160, 805, 755.

Ligand Lb was synthesized with a similar procedure as 
for La. Yield: 85%. 1H NMR (400  MHz,  CDCl3): δ13.5 
(s, 2H, OH); 8.5 (s, 2H, CHO); 6.9–7.4 (m, 12H, ArH); 
4.0 (s, 2H,  CH2); 2.9 (tr, 4H,  CH2); 1.8 (m, 4H,  CH2); 
1.4 (s, 18H, C(CH3)3); 1.05 (m, 6H,  CH3). 13C NMR 
(101 MHz,  CDCl3): δ 163.0 (CH=N), 159.1, 147.0, 137.9, 
133.1, 131.5, 130.6, 130.4, 127.5, 127.0, 126.0, 119.1, 
118.0 (Ar–C), 40.4, 35.0, 34.3, 29.5, 22.4, 13.7. ESI-
MS [m/z (%)]: 663 (100), 666 (33)  [M+]. Anal. Calcd for 
 C41H50N2O2S2: C, 73.83; H, 7.56; N, 4.20%. Found: C, 
73.29; H, 7.31; N, 4.38%. IR (KBr,  cm−1): 2959, 2872, 
1614, 1567, 1438, 1269, 1202, 1159, 802, 755.

Ligand Lc was synthesized with a similar procedure 
as for La. Yield: 75%. 1HNMR (400 MHz, ppm,  CDCl3): 
δ13.53 (s, 2H, OH), 8.54 (s, 2H, N=CH), 7.32–7.00 (m, 
12H, ArH), 3.92 (s, 2H,  CH2), 2.91 (s, 4H,  SCH2), 1.69 
(m, 4H,  CH2), 1.47 (m, 10H,  CH2), 1.27 (s, 18H, C(CH3)3), 
0.87 (t, 6H,  CH3). 13C NMR (101 MHz,  CDCl3): δ 163.2 
(CH=N), 159.5, 138.4, 135.0, 132.9, 132.7, 131.7, 131.4, 
130.0, 127.6, 126.5, 120.5, 118.9 (Ar–C), 40.6, 35.0, 
33.1, 31.8, 29.5, 29.4, 29.3, 29.2, 29.0, 22.6, 14.1. ESI-
MS [m/z (%)]: 804 (100), 806 (16)  [M+]. Anal. Calcd for 
 C51H70N2O2S2: C, 75.88; H, 8.74; N, 3.47%. Found: C, 
75.32; H, 8.96; N, 3.75%. IR (KBr,  cm−1): 2950, 2925, 
2857, 1613, 1565, 1467, 1437, 1364, 1268, 1202, 1158, 
803, 756.

2.3.2  Synthesis of the Binuclear Ti Complexes

Synthesis of the binuclear Ti complexes Ti2a: 0.61  g 
(1  mmol) of ligand La was added to a 100  mL Schlenk 
flask, dissolved in 15 mL of  CH2Cl2. A solution of  TiCl4 
(0.28  mL, 2.6  mmol) in  CH2Cl2 (15  mL) was added to 
another 100  mL Schlenk flask. The ligand solution was 
then slowly added to the  TiCl4 solution at −78 °C. After 
4 h, the mixture was slowly warmed to RT, then heated to 
35 °C for 24 h under stirring. The solvent was vacuum dried 
to afford Ti2a as a red brown solid (0.6 g, 65%). 1H NMR 
(400  MHz,  CD2Cl2): 8.76 (s, 2H, N=CH), 7.69–7.19 (m, 
12H, ArH), 4.17 (s, 2H,  CH2), 3.05 (s, 6H,  CH3), 1.28 (s, 
18H, C(CH3)3). 13C NMR (101  MHz,  CD2Cl2): δ 162.4 
(CH=N), 159.5, 154.5, 148.2, 145.3, 138.4, 136.1, 134.0, 
129.7, 129.0, 128.2, 125.1, 122.7 (Ar–C), 53.4, 31.6, 

22.7, 14.1. ESI-MS [m/z (%)]: 915 (100), 917 (15)  [M+]. 
Anal. Calcd for  C37H40Cl6N2O2S2Ti2: C, 48.45; H, 4.40; 
N, 3.05%. Found: C, 48.87; H, 4.12; N, 3.43%. IR (KBr, 
 cm−1): 2959, 1632, 1548, 1387, 1266, 856, 759, 608.

Ti2b was prepared using the same procedure as for Ti2a. 
Yield: 98.2%. 1H NMR (400MHz,CDCl3): 8.7 (s, 2H, 
CHO); 7.1–7.7 (m, 12H, ArH); 4.1 (s, 2H,  CH2); 2.48 (tr, 
4H,  CH2); 2.05 (m, 4H,  CH2); 1.55 (s, 18H, C(CH3)3); 
1.13 (m, 6H,  CH3). 13C NMR (101 MHz,  CDCl3): δ 162.9 
(CH=N), 159.4, 152.6, 145.0, 142.6, 136.3, 136.2, 134.0, 
131.4, 131.3, 130.3, 128.0, 119.3 (Ar–C), 53.4, 48.0, 35.4, 
29.8, 21.8, 13.4. ESI-MS [m/z (%)]: 971 (100), 973 (86) 
 [M+]. Anal. Calcd for  C41H48Cl6N2O2S2Ti2: C, 50.59; H, 
4.97; N, 2.88%. Found: C, 50.06; H, 4.25; N, 3.12%. IR 
(KBr,  cm−1): 2963, 2869, 1626, 1548, 1386, 1271, 1109, 
857, 758, 612.

Ti2c was prepared using the same procedure as for Ti2a. 
Yield: 70%. 1H NMR (400 MHz, ppm,  CDCl3): δ 8.72 (s, 
2H, N=CH), 7.65–7.25 (m, 12H, ArH), 4.09 (s, 2H,  CH2), 
3.50 (s, 4H,  SCH2), 2.00 (m, 4H,  CH2), 1.55 (m, 10H, 
 CH2); 1.27 (s, 18H, C(CH3)3), 0.87 (t, 6H,  CH3). 13C NMR 
(101 MHz,  CDCl3): δ 163.0 (CH=N), 161.7, 150.5, 137.5, 
136.3, 136.1, 134.3, 134.2, 131.5, 130.3, 128.8, 128.0, 
119.4 (Ar–C), 46.3, 35.3, 31.8, 29.9, 29.8, 29.1, 29.0, 28.8, 
28.1, 22.6, 14.1. ESI-MS [m/z (%)]: 1113 (100)  [M+]. 
Anal. Calcd for  C51H68Cl6N2O2S2Ti2: C, 55.00; H, 6.15; 
N, 2.52%; Found: C, 55.22; H, 6.34; N, 2.29%. IR (KBr, 
 cm−1): 2923, 2850, 1602, 1545, 1391, 1263, 864, 752, 623.

3  Results and Discussion

3.1  Synthesis of Binuclear Ti Complexes

Methylene-bridged bis(salicylaldehyde) 3 was synthesized 
through two steps with o-tbutyl phenol as starting material 
according to the reference [55], which then reacted with 
alkylthio aniline to obtain the methylene-bridged bis-salic-
ylaldiminato tridentate [ONS] ligands La–Lc. The ligands 
reacted directly with excess  TiCl4 to form the binuclear Ti 
complexes Ti2a–Ti2c, with no need to deprotonate with a 
base. This procedure is much simpler than that for the syn-
thesis of bidentate binuclear Ti(IV) complexes [34], and the 
products were also more stable. The structures of the free 
ligands and the corresponding binuclear Ti complexes were 
confirmed by 1H NMR, 13C NMR, ESI-MS, FT IR and 
elemental analysis. The 1H NMR of La and the responding 
complex Ti2a was shown in Fig. 1. Notable changes for Ti2a 
were the disappearance of OH resonance at δ13.46  ppm, 
and the shift of the thiomethyl from 2.47 to 3.05 ppm. The 
1H NMR spectra also proved that the molecule adopted a 
symmetric geometry.
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3.2  Ethylene Polymerization

The binuclear Ti complexes Ti2a–Ti2c were examined 
for ethylene polymerization under MMAO activation, 
with the results summarized in Table  1. Overall, these 
binuclear complexes showed very high activity (over 
 106 g mol−1 h−1 atm−1) under suitable conditions. The melt-
ing points (Tm) of the products were about 133 °C, which 
were typical of high-density polyethylene. This was in full 
accordance with the 13C NMR spectra (not shown), which 
showed no branches on the polymer backbone.

The influences of different reaction conditions such as 
the reaction temperature and Al:Ti molar ratio upon the 
catalytic behaviors of Ti2c/MMAO were also studied. The 

optimum activity was achieved with Al:Ti = 1500 at 55 °C 
under ethylene pressure of 1.0 atm (Table 1, entry 8).

As the temperature was raised from 25 to 65 °C, the 
catalytic activity remained at high level, and a maximum 
activity of 2.43 × 106  g  mol−1  h−1  atm−1 was achieved at 
55 °C (Table 1, entry 4). The activity slightly decreased as 
the polymerization temperature further increased to 65 °C 
(Table 1, entry 5). The temperature also had great influence 
on the molecular weight of the products. With the tem-
perature increase, the Mw of the polymer decreased from 
8.74 × 104 g mol−1 at 25 °C to 1.16 × 104 g mol−1 at 65 °C 
(Fig.  2), indicating that the high polymerization tempera-
ture might promote chain transfer reaction.

The influence of Al/Ti molar ratio was investigated 
by maintaining the temperature at 55 °C, and the maxi-
mum activity was achieved with an Al/Ti ratio of 1500 
(Table  1, entry 8). The catalyst maintained high activity 
of over  106 g mol−1 h−1 atm−1 even at a low Al/Ti ratio of 
500. The molecular weight of the polyethylene was sen-
sitive to the Al/Ti ratio and decreased from 5.09 × 104 to 
1.48 × 104 g mol−1 with the increase of the Al/Ti ratio from 
500 to 2500, suggesting that chain transfer to aluminum 
compounds occurred in the process.

The influences of the alkylthio sidearm on catalytic per-
formance were also investigated. Under the same condition, 
the activity of the three binuclear complexes increased in 
the order of Ti2c  > Ti2b > Ti2a (Table  1, entry 8, 10, 11), 
it appeared that the longer the alkyl group, the higher the 
homopolymerization activity. This is somehow different 
from the corresponding mononuclear complexes observed 
by Tang et  al. [29], where the activities were similar. For 
ethylene homopolymerization, the steric hindrance of the 
substituents in the mononuclear Ti complexes appeared to 
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Fig. 1  1H NMR spectra of ligand La and complex Ti2a

Table 1  The results of ethylene 
polymerization catalyzed by 
binuclear Ti complexes

Toluene 30 mL, 1 atm ethylene pressure, reaction time 5 min
a Activity,  106 g mol−1 h−1 atm−1

b Melting temperature determined by DSC
c Determined by GPC using polystyrene standard

Entry Cat. (μmol) Al/Ti Temp (oC) PE (g) Acta Tmb (oC) Mwc  (104g/mol) PDIc

1 Ti2c (2) 2000:1 25 0.3922 1.17 141.6 8.74 3.56
2 Ti2c (2) 2000:1 35 0.3941 1.18 – – –
3 Ti2c (2) 2000:1 45 0.5057 1.52 136.9 3.24 2.52
4 Ti2c (2) 2000:1 55 0.8105 2.43 – – –
5 Ti2c (2) 2000:1 65 0.5425 1.63 133.7 1.16 2.35
6 Ti2c (2) 500:1 55 0.4213 1.26 136.4 5.09 2.75
7 Ti2c (2) 1000:1 55 0.5645 1.69 – – –
8 Ti2c (2) 1500:1 55 0.8537 2.56 135.4 1.57 2.48
9 Ti2c (2) 2500:1 55 0.5705 1.71 134.9 1.48 2.27
10 Ti2a (3) 1500:1 55 0.7479 1.50 130.8 0.79 2.71
11 Ti2b (2) 1500:1 55 0.7425 2.24 133.4 1.45 2.78
12 Ti1c (4) 1500:1 55 0.6682 2.00 130.8 0.95 2.79
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have little effect on activity, due to the wide open coordina-
tion environment of the tridentate complexes and the small 
size of ethylene monomer. Therefore, the difference in 
activity here may be due to their different solubilities. The 
complex Ti2a bearing a methylthiol group had the lowest 
solubility and consequently lowest catalytic activity. Tang 
also found that the increase of solubility could increase the 
catalytic activity of phenoxy-imine [ONS] trident Ti com-
plexes. The molecular weight of the polyethylene catalyzed 
by the binuclear complexes increased in the same order 
(Fig. 3), with the products catalyzed by Ti2c of the highest 
Mw, which was attributed to the larger steric hindrance of 
octylthio group that inhibited the chain transfer reaction.

Compared with the mononuclear analogue (Ti1c), the 
catalytic activity of the binuclear Ti complex Ti2c increased 
modestly by 28%, and the molecular weight produced by 
Ti2c was higher than that by Ti1c. However, the molecular 
weight distribution of the polyethylenes catalyzed by binu-
clear Ti complexes were within 2–3, similar to that of the 
mononuclear analogue (Table 1, entry 8 vs. 12).

3.3  Ethylene Copolymerization with α-Olefins

These binuclear Ti complexes were also excellent cata-
lysts for copolymerization of ethylene and α-olefins under 
MMAO activation. The copolymerization of ethylene with 
1-hexene or 1-octene was investigated under similar con-
dition with various feeds of α-olefins and the results were 
summarized in Table 2.

Comparable high activity (over 2 × 106 g mol−1 h−1 atm−1)  
with the copolymerzation was observed for all the reac-
tion system. As the feed of 1-hexene was increased from 5 
to 15 mmol, the copolymerization activity increases from 
2.07 to 2.42 × 106 g mol−1 h−1 atm−1 (Table 2, entry 1–3). 

The products were apparently branched polyethylene, as 
revealed by the much diminished melting points and the 
high temperature 13C NMR spectra. The 1-hexene incorpo-
ration ratio in the copolymer was calculated from the 13C 
NMR spectra [33] and found tunable from 1.4 to 7.3% by 
varying the initial feed of α-olefin commoners from 5 to 
15  mmol (Fig.  4). The melting points of the copolymers 
also varied from 106.7 to 89.5 °C (Fig. 5).

For ethylene copolymerization, the steric hinderance of 
the binuclear Ti complexes played important role in cata-
lysts performance. Under the same condition, the binu-
clear complex Ti2a with methylthio sidearm demonstrated 
the highest catalytic activity and comonomer incorpora-
tion ratio, as a result of the small steric hindrance of the 
side group. Furthermore, higher activity was observed as 
compared with the mononuclear complex (Table 2, entries 
2 vs. 6), and the incorporation of 1-hexene was 6.9, 5.7, 
and 9.3% respectively for Ti2c, Ti2b, and Ti2a, all of which 
were significantly higher than the 4.5% ratio obtained by 
Ti1c (Table 2, entries 2, 5, 4, 6, and Fig. 6). It is speculated 
that the higher catalytic activity and comonomer incorpora-
tion ratio are caused by the larger steric hindrance of these 
binuclear Ti complexes which would reduce the interac-
tion between the catalyst and the cocatalyst molecules and 
therefore improve the catalytic activity and comonomer 
incorporation ratio.

Marks and Ma also found that the agostic interaction 
between the comonomer and metal center could stabilize 
the coordinated bimetallic olefin complex and enchain ole-
fin comonomers more easily than mononuclear complex 
[54]. The molecular weights of the copolymers were found 
in the range 1.33–1.93 × 104 g mol-1, and a narrower poly-
dispersity (2.08–2.39) as compared with the homopolym-
erization was obtained (Fig. 7).
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Fig. 2  GPC traces of PE samples from entries 2, 3, and 6 in Table 1
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Fig. 3  GPC traces of PE samples from entries 8, 10–12 in Table 1
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Similarly, for copolymerization with 1-octene, higher 
activities (2.37–2.94 × 106 g mol−1 h−1 atm−1) and comono-
mer incorporation ratios (7.9–9.8%) are obtained (Table 2, 
entries 7–10) as compared with the mononuclear complex 
(2.27 × 106 g mol−1 h−1 atm−1 of activity, 5.9% of incorpo-
ration ratio). Both these results were higher than that for 
1-hexene copolymerization, although 1-octene was a bulk-
ier comonomer. It is likely that 1-octene produced longer 
branches and rendered the product easier to dissolve, thus 
facilitated the polymerization reaction. Similar phenome-
non has also been observed for the mononuclear complexes 
[29, 56]. These tridentate binuclear Ti complexes showed 
better catalytic properties for ethylene-α-olefin copolym-
erization than the bis-ligated binuclear catalyst FI2–Ti2 
reported by Ma, which generated similar activities and 
1-hexene or 1-octene incorporation ratios as compared to 
the mononuclear FI–Ti1.

Table 2  Copolymerization of 
ethylene and α-olefins catalyzed 
by binuclear Ti complexes

Toluene 30 ml, 1 atm ethylene pressure, reaction time 5 min, temp 55 °C, Al:Ti 1500 equiv. MMAO
a Activity,  106 g mol−1 h−1 atm−1

b Determined by GPC using polystyrene standard

Entry Cat. (μmol) α-Olefins (mmol) Poly (g) Acta Tm (oC) Mw
b PDIb Incorpb 

(mol%)

1 Ti2c (2) C6 (5) 0.6887 2.07 106.7 – – 1.4
2 Ti2c (2) C6 (10) 0.7065 2.12 95.4 1.93 2.08 6.9
3 Ti2c (2) C6 (15) 0.8079 2.42 89.5 – – 7.3
4 Ti2a (2) C6 (10) 0.8401 2.52 85.5 1.33 2.14 9.3
5 Ti2b (2) C6 (10) 0.8055 2.42 99.1 1.36 2.39 5.7
6 Ti1c (4) C6 (10) 0.6859 2.05 102.8 1.40 2.29 4.5
7 Ti2a (2) C8 (10) 0.9794 2.94 92.1 1.61 2.20 9.8
8 Ti2b (2) C8 (10) 0.9073 2.72 98.2 1.29 2.42 8.0
9 Ti2c (2) C8 (10) 0.7912 2.37 94.8 1.42 2.16 7.9
10 Ti1c (4) C8 (10) 0.7570 2.27 100.7 1.44 2.36 5.9

40 35 30 25 20 15 10

15mmol

10mmol
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5mmol

Fig. 4  13C NMR spectra of PE samples from entries 1–3 in Table 2
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Fig. 5  DSC curves of PE samples from entries 1–3 in Table 2
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Fig. 6  NMR spectra of PE samples from entries 2, 4–6 in Table 2
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4  Conclusions

Binuclear Ti complexes (Ti2a–Ti2c) based on methylene-
bridged salicylaldiminato tridentate [ONS] ligands bearing 
different alkylthio sidearms were prepared and examined 
for ethylene (co)polymerization under MMAO activation. 
High activity of over  106 g mol−1 h−1 atm−1 was obtained 
for both homo- and co-polymerization. Compared with the 
corresponding mononuclear complex, the binuclear cata-
lysts showed increased activity and comonomer insertion 
ratio. The alkylthio sidearm also significantly influenced 
the polymerization behavior. Complex Ti2c with the long 
octylthio side group showed higher activity for ethylene 
polymerization than the methylthio functionalized Ti2a, as 
a result of the increased solubility of the catalyst in toluene. 
While for copolymerization, complex Ti2a demonstrated 
the highest catalytic activity and comonomer incorporation 
ratio, due the small steric hindrance of the methylthio side 
group.
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