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Abstract: N-Carboxymethyl 3-hydroxypiperidine (6) undergoes
substitution at C(6) via reductive cleavage of N,S-acetal 8a with
lithium naphthalenide (LN) and trapping of the resulting carbanion-
ic intermediate 9 with different electrophiles to give adducts 10.
N,S-Acetal 8a also undergoes C–S homolysis and trapping of the
resulting radical provides an alternative entry to 2-substituted-5-
hydroxypiperidines.
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Hydroxylated pyrrolidines and piperidines1 are found
within a range of natural products and an ability to intro-
duce these fragments directly via functionalization of an
appropriate intact heterocyclic unit is a synthetically
attractive option. We have previously described the regio-
selective lithiation of N-Boc 3-hydroxypyrrolidine (1),
which undergoes preferential deprotonation at C(5) to
give 2, thereby providing access to 2-substituted 4-hy-
droxypyrrolidines 3 (Scheme 1).2

Scheme 1

Generating a disubstituted piperidine via a similar ap-
proach is attractive but Beak3 has reported that N-Boc 3-
hydroxypiperidine (4) does not undergo lithiation at either
C(2) or C(6) to give 5a and 5b, respectively. In light of our
ability to produce and characterize 2, we have also exam-
ined deprotonation of 4 under a variety of conditions, but
without success. In this paper we describe an alternative
entry to an a-lithiated 3-hydroxypiperidine (cf. 5b) based
on a regioselective oxidation of the piperidine nucleus that

enables subsequent metalation by reductive lithiation
rather than deprotonation.

N-Carboxymethyl 3-hydroxypiperidine (6) was subjected
to anodic oxidation4 in methanol to provide a 53% yield of
the N,O-acetals 7a and 7b as an inseparable mixture of re-
gio and cis/trans diastereoisomers (Scheme 2).5 This reac-
tion was also investigated using the corresponding N-tosyl
and N-Boc piperidines, but these were less efficient sub-
strates for the oxidation process. In addition, the oxidation
of 6 was best carried out using graphite rather than plati-
num electrodes6 as the latter produced significant amounts
of overoxidized material.

Scheme 2 Reagents: (a) 5 mol% Et4NOTs, carbon electrodes,
MeOH, 8 h, r.t., 2.34 Fmol–1 (53%); (b) PhSH, p-TsOH, CH2Cl2, 2 h,
0 °C (3:1 ratio of 8 and 9, 80% total yield).

Exposure of 7a,b to PhSH under acidic conditions provid-
ed the corresponding N,S-acetals 8a,b, which were readi-
ly separable and the desired C(6)-regioisomer 8a was
isolated in 61% yield.7,8

Reductive lithiation of 8a (as a mixture of cis/trans dia-
stereomers) was achieved using (i) BuLi (to generate the
corresponding alkoxide) followed by (ii) freshly prepared
lithium naphthalenide (LN, 4 equiv). Addition of an ap-
propriate electrophile to the putative a-lithiated piperidine
9 gave the N-Boc 2-substituted-5-hydroxypiperidines
10a–c in moderate yields (Scheme 3, Table 1).9

Products 10a–c were all obtained as cis and trans isomers,
which were separable. In each case, the major component
was the trans isomer (however, see below and ref.11) and
1H NMR (NOE and in particular the signal associated
with H6ax) was especially helpful in making this assign-
ment. In the case of cis/trans-10a, this product was con-
verted by hydrogenation to 11, the cis and trans isomers
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of which were individually characterized (Scheme 4).
Trans-11 is a known intermediate in the synthesis of N-
methyl pseudoconhydrine 12 and both cis- and trans-11
have been described previously.10

Scheme 4 Reagents: (a) H2, 5% Pd/C, MeOH (96%).

Two issues currently present themselves. Firstly, an ex-
cess of LN is required to achieve fast conversion of 8a,
and this limits the nature of the electrophile that can be
used to trap 9. Attempts to capture 9 with, for example,
PhCHO failed as benzyl alcohol was formed by rapid
competitive reduction. Also PhS– is generated by reduc-
tion of 8a, and this can lead to the formation of by-prod-
ucts; when allyl bromide was used, phenyl allyl sulfide
was also detected.

These issues not withstanding, reductive cleavage of N,S-
acetal 8a does provide for the first time a route to a 3-hy-
droxypiperidine moiety nucleophilic at C(6). Intermediate
9 has been trapped with synthetically useful electrophiles,
and studies are underway to address the practical issues
that have been highlighted above. It is also appropriate to
recognize that the reactivity associated with 8a when
coupled to 9 complements the well known electrophilic
profile associated with N-acyl imimium ions, which
provides an alternative method for substitution adjacent to
nitrogen.11

In addition to undergoing reductive lithiation, N,S-acetal
8a undergoes homolytic cleavage. Keck allylation (allyl
tributylstannane, AIBN, PhMe, reflux) of 8a gave 10a in
33% yield but as a 5:1 mixture of cis and trans isomers.
Note under these conditions the cis isomer predominated.
Using Bu3SnH and AIBN, the resulting a-aza radical was
also trapped by a series of alkenes to provide the corre-
sponding 2-substituted-5-hydroxypiperidines 10d–f in
moderate yields and as cis/trans mixtures (Scheme 5).12,13

Scheme 5 Reagents: (a) Bu3SnH, AIBN, PhMe, reflux, RCH=CH2.

In summary, N,S-acetal 8a provides access to nucleo-
philic reactivity using two complementary methods based
on either (i) reductive lithiation or (ii) C-S homolysis.
Both methods can be utilized to generate a range of N-pro-
tected 2-substituted-5-hydroxypiperidines.
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Table 1 Reaction of the Electrophile with a-Lithiated Piperidine 9
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piperidine (8b, 275 mg, 19%) as a mixture of diastereo-
isomers and as colorless oil. Continued elution gave 2-
phenylthio-N-carbomethoxy-5-hydroxypiperidine (8a, 880 
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The combined organic layers were dried (Na2SO4), 
concentrated and the residue was purified by flash 
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