PHOTOLYSIS AND PYROLYSIS OF POLYSILYLATED DIAZOMETHANES. EFFECTIVE MIGRATING TENDENCY OF TRIMETHYLSILYL GROUP TO A CARBENE CENTER

> Akira SEKIGUCHI and Wataru ANDO^{*} Department of Chemistry, The University of Tsukuba, Niihari-gun, Ibaraki 305

Photolysis and pyrolysis of polysilylated diazomethanes were investigated, and a selective migration of trimethylsilyl group to a carbene center was observed.

Research on silaethylenes has remarkably grown,¹⁾ and one of the typical approach is the rearrangement of silylcarbenes in the photo and thermal decompositions of silyl diazo compounds.²⁾ In a previous paper, we reported that the migrating ability of the groups on silicon atom to a carbene center was not significantly influenced on the nature of substituents and depended on the statistical factor.³⁾ Since Si-Si bond has a character of donating effect of σ -electrons⁴⁾ and the bond is relatively weaker than that of Si-C,⁵⁾ silylcarbenes having Si-Si bond should undergo a selective migration of trimethylsilyl group by cleaving Si-Si bond. In this letter, we demonstrate an effective migration of trimethylsilyl group to a carbene center in the photo and thermal decompositions of polysilylated diazomethanes, 1, 2, and 3.

 $\begin{array}{cccc} Me_{3}SiSiMe_{2}-C-H & Me_{3}SiSiMe_{2}-C-SiMe_{3} & (Me_{3}Si)_{3}Si-C-SiMe_{3} \\ N_{2} & N_{2} & N_{2} \\ \hline 1 & 2 & 3 \end{array}$

Pentamethyldisilanyldiazomethane $\underline{1}^{6}$ was prepared by the reaction of pentamethyldisilanylmethylmagnesium chloride and diphenyl phosphorazide in 50% yield according to the method of Shioiri.⁷⁾ Pentamethyldisilanyltrimethylsilyldiazomethane $\underline{2}$ was obtained in 93% yield by treating chloropentamethyldisilane with lithium trimethylsilyldiazomethane prepared from trimethylsilyldiazomethane and lithium diisopropylamide.⁸⁾ Similarly, silyldiazomethane <u>3</u> was prepared quantitatively from tris(trimethylsilyl)chlorosilane and lithium trimethylsilyl-diazomethane.⁹⁾

Flash vacuum pyrolysis of $\underline{1}$ at 450°C produced disilacyclobutane $\underline{5}$ in 47% yield (a mixture of trans and cis; ratio 59 : 41), apparently formed by the head-to-tail dimerization of silaethylene $\underline{4}$.¹⁰⁾ The silaethylene $\underline{4}$ was further intercepted by alcohols and carbonyl compounds. When $\underline{1}$ was pyrolyzed with t-butyl alcohol through a vertical Pyrex tube packed with Pyrex chips at 450°C under flowing nitrogen, t-butoxysilane $\underline{6}$ was obtained in 52% yield. Copyrolysis of $\underline{1}$ with acetone gave silyl enol ether $\underline{7}$ in 54% yield, and with a 17-fold excess of benzophenone led to the formation of vinylsilane $\underline{8}$ in 58% yield which was formed by a Wittig-type reaction of $\underline{4}$ with the ketone.

Photolysis of $\underline{1}$ with a high pressure mercury lamp also yielded the silaethylene $\underline{4}$ which was successfully trapped by t-butyl alcohol and acetone to give the same products $\underline{6}$ and $\underline{7}$ in 4l and 28% yields, respectively. It is of quite interest to note that the exclusive migration of trimethylsilyl group to a carbene center was observed in both thermal and photochemical decompositions of $\underline{1}$, no detectable amounts of methyl migration product being formed.

The similar silyl migration was observed in the reaction of 2. Thus, pyrolysis of 2 with t-butyl alcohol at 450°C under flowing nitrogen afforded only t-butoxy-silane 10 in 59% yield by the reaction of silaethylene 9. Silyl enol ether 11

and vinylsilane $\underline{12}$ were formed in 52 and 48% yields, respectively when copyrolysis of 2 with acetone and benzaldehyde were conducted.

Photolyses of $\underline{2}$ in t-butyl alcohol and acetone also led to the same products $\underline{10}$ and $\underline{11}$ in 58 and 29% yields, respectively. No methyl migration could be found in the photo and thermal decompositions of 2.

$$\underbrace{2 \xrightarrow{hv \text{ or } \Delta} Me_3 \text{SiSiMe}_2 - \ddot{c} - \text{SiMe}_3 \xrightarrow{} Me_2 \text{Si=C}(\text{SiMe}_3)_2 \xrightarrow{\frac{t_{BuOH}}{0}} Me_2 \text{Si-CH}(\text{SiMe}_3)_2 \xrightarrow{10} \\ \underbrace{9}_{0} & \underbrace{9}_{0} \\ Me_2 \text{CO}_{1} & \underbrace{9}_{0} \\ Me_2 \text{CO}_{1} & \underbrace{10}_{0} \\ Me_2 \text{Si-CH}(\text{SiMe}_3)_2 & PhCH=C(\text{SiMe}_3)_2 + [Me_2 \text{Si=O}] \\ \underbrace{0 - C = CH_2}_{Me} & \underbrace{12}_{12} \\ \underbrace{11}_{1} \\ \underbrace{11}$$

Photolysis of $\underline{3}$ in t-butyl alcohol cleanly produced t-butoxysilane $\underline{14}$ in 60% yield by the interception of silaethylene $\underline{13}$. Silyl enol ether $\underline{15}$ was also obtained by the photolysis of $\underline{3}$ in acetone in 38% yield.

$$\underline{3} \xrightarrow{h_{U}} (Me_{3}Si)_{3}Si-\ddot{C}-SiMe_{3} \xrightarrow{} (Me_{3}Si)_{2}Si=C(SiMe_{3})_{2} \xrightarrow{L_{BUOH}} (Me_{3}Si)_{2}Si-CH(SiMe_{3})_{2}$$

$$\underbrace{13}_{0} \xrightarrow{0} Me_{2}CO \xrightarrow{14} Me_{3}Si)_{2}Si-CH(SiMe_{3})_{2}$$

$$\underbrace{14}_{0-C=CH_{2}} \xrightarrow{0-C=CH_{2}} Me \xrightarrow{15}$$

In summary, the effective migrating aptitude of trimethylsilyl group to a carbene center was observed in the reactions of these polysilylated diazomethanes. This may reflect a vertical charge stabilization by the donating effect of Si-Si σ -electrons to the vacant p-orbital of the silylcarbenes.

References

- (a) L.E.Gusel'nikov, N.S.Nametkin, and V.M.Vdovin, Acc. Chem. Res., <u>8</u>, 18 (1975).
 - (b) L.E.Gusel[:]nikov and N.S.Nametkin, Chem. Rev., 79, 529 (1979).
 - (c) M.Ishikawa and M.Kumada, Adv. Organomet. Chem., 19, 51 (1981).
 - (d) B.Coleman and M.Jones, Jr., Rev. Chem. Intermed., 4, 297 (1981).
 - (e) A.G.Brook, F.Abdesaken, B.Gutekunst, G.Gutekunst, and R.K.Kallury, Chem. Commun., <u>1981</u>, 191.
 - (f) A.G.Brook, S.C.Nyburg, F.Abdesaken, B.Gutekunst, G.Gutekunst, R.K.M.R.Kallury, Y.C.Poon, Y.M.Chang, and W.Wong-Ng, J. Am. Chem. Soc., <u>104</u>, 5667 (1982).
 - (g) H.F.Schaefer III, Acc. Chem. Res., <u>15</u>, 283 (1982).
- A.Sekiguchi and W.Ando, J. Am. Chem. Soc., <u>103</u>, 3579 (1981), and references cited therein.
- 3) W.Ando, A.Sekiguchi, and T.Migita, Chem. Lett., 1976, 779.
- 4) H.Sakurai, J. Organomet. Chem., 200, 261 (1980).
- 5) R.Walsh, Acc. Chem. Res., 14, 246 (1981).
- 6) Compound <u>1</u>: bp. $62-65^{\circ}C/22 \text{ mmHg}$; NMR(CCl₄, δ) 0.12(s,9H,SiMe₃), 0.18(s,6H, SiMe₂), and 2.53(s,1H,CHN₂); IR(NaCl) 2050 cm⁻¹(N₂); Mass m/e 144 (M⁺-28).
- 7) S.Mori, I.Sakai, T.Aoyama, and T.Shioiri, Chem. Pharm. Bull., 30, 3380 (1982).
- 8) Compound <u>2</u>: bp. 79-80°C/3 mmHg; NMR(CCl₄, δ) 0.05(s,9H,SiMe₃), 0.09(s,9H, SiMe₃), and 0.12(s,6H,SiMe₂); IR(NaCl) 2025 cm⁻¹(N₂); Mass m/e 216 (M⁺-28).
- 9) Compound <u>3</u>: Purified by alumina column; NMR(CCl₄, δ) 0.17(s,9H,SiMe₃) and 0.22(s,27H,SiMe₃); IR(NaCl) 2020 cm⁻¹(N₂); Mass m/e 360 (M⁺).
- 10) All new compounds presented here showed NMR, IR, and Mass spectra as well as satisfactory elemental analyses consistent with the structures assigned. Some representative data are as follows.

(a) Compound <u>5</u> (a mixture of trans and cis): $MMR(CCl_4, \delta) = -0.43(s, Si_3CH), -0.40(s, Si_3CH), -0.10(s, SiMe_3), -0.09(s, SiMe_3), 0.15(s, SiMe_2), 0.20(s, SiMe_2), and 0.23(s, SiMe_2); Mass m/e 288 (M⁺); Anal. Found: C, 50.02; H, 11.44%. Calcd for <math>C_{12}H_{32}Si_4$: C, 49.91; H, 11.17%.

(b) Compound <u>6</u>: NMR(CCl₄, δ) -0.25(s,2H,SiCH₂Si), 0.00(s,9H,SiMe₃), 0.10(s, 6H,SiMe₂), and 1.23(s,9H,t-Bu); IR(NaCl) 1050 cm⁻¹(Si-O-C); Anal. Found: C, 55.10; H, 12.21%. Calcd for C₁₀H₂₆Si₂O: C, 54.97; H, 11.99%.

(c) Compound <u>7</u>: NMR(CCl₄, δ) -0.10(s, 2H, SiCH₂Si), 0.04(s, 9H, SiMe₃), 0.18(s, 6H, SiMe₂), 1.72(s, 3H, C=C-Me), and 3.92(br.s, 2H, C=CH₂); IR(NaCl) 1640(C=C) and 1050 cm⁻¹(Si-O-C); Anal. Found: C, 53.08; H, 11.12%. Calcd for C₉H₂₂Si₂O: C, 53.39; H, 10.95%.

(d) Compound <u>10</u>: NMR(CCl₄, δ) -0.80(s, 1H, Si₃CH), 0.07(s, 18H, SiMe₃), 0.16(s, 6H, SiMe₂), and 1.22(s, 9H, t-Bu); IR(NaCl) 1040 and 1010 cm⁻¹(Si-O-C); Anal. Found: C, 53.64; H, 12.01%. Calcd for C₁₃H₃₄Si₃O: C, 53.71; H, 11.79%. (e) Compound <u>14</u>: NMR(CCl₄, δ) -0.53(s, 1H, Si₃CH), 0.06(s, 18H, SiMe₃), 0.12(s, 18H, SiMe₃), and 1.18(s, 9H, t-Bu); IR(KBr) 1030 and 1015 cm⁻¹(Si-O-C); Anal. Found: C, 49.93; H, 11.57%. Calcd for C₁₇H₄₆Si₅O: C, 50.17; H, 11.39%.

(Received March 28, 1983)