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Abstract: Racemic Evans’ oxazolidinones were efficiently re-
solved using a combination of quasi-enantiomeric profens. The
levels of stereocontrol were high, giving products with predictable
configurations.
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The separation of enantiomeric substrates using a parallel
kinetic resolution is becoming an increasingly popular
method of resolution.2 In recent years, attention has fo-
cussed on the use of traditional chiral auxiliaries as com-
plementary quasi-enantiomeric resolving agents.3 In
particular, Fox4 has elegantly shown the use of a pair of
Evans’ oxazolidinones (S)-1 and (R)-2 to efficiently re-
solve racemic cyclopropene carboxylic acids, like (rac)-3,
to give the corresponding oxazolidinone adducts 4 and 5
with near perfect levels of stereocontrol (Scheme 1).
These adducts were efficiently separated using Vedejs’
post-modification strategy5 by treatment with TBAF to
give the more separable adducts 4 and 6 (Scheme 1).

By comparison, Davies6 has superbly demonstrated the
use of quasi-enantiomeric lithium amides, (S)-7 and (R)-8
(Figure 1), to resolve racemic methyl 3-tert-butylcyclo-
pentene carboxylate (rac)-9 to give quasi-enantiomeric b-
amino esters syn,syn,anti-10 and syn,syn,anti-11 with ex-
cellent stereocontrol (Scheme 2). More importantly, these
adducts were separable, without post-modification, by
simple column chromatography.6

Figure 1 quasi-Enantiomeric Davies’ lithium amides (S)-7 and 
(R)-8

We have previously reported7 the mutual kinetic resolu-
tion of racemic pentafluorophenyl 2-phenylpropionate 12
using a racemic oxazolidinone, such as (rac)-1, to give the
racemic syn-adduct 13 with high diastereocontrol
(Scheme 3).

We have also extended this approach7 for the resolution of
racemic pentafluorophenyl 2-phenylpropionate 12 by em-
ploying two complementary enantiomerically pure quasi-
enantiomeric oxazolidinones (R)-1 and (S)-14
(Scheme 4). Simple addition of an equimolar mixture of
lithiated oxazolidinones, derived from (R)-1 and (S)-14, to
a solution of racemic pentafluorophenyl 2-phenylpropi-
onate 12 in THF at –78 °C, gave the corresponding enan-
tiomerically pure syn-adducts 13 and 15 in good yields
and with high levels of diastereoselectivity (Scheme 4).7

We now report an extension of our methodology for the
resolution of racemic Evans’ oxazolidinones 1, 14 and 16
by the use of complementary quasi-enantiomeric profens
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Scheme 1 Parallel kinetic resolution of anhydride (rac)-3 using
quasi-enantiomeric oxazolidinones (S)-1 and (R)-2
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(Figure 2). We primarily focussed on the use of the
naproxen derived active ester (S)-17 as a surrogate for the
S-enantiomer of pentafluorophenyl 2-phenylpropionate
12 within our mutual resolution due to their potential
separability (Figure 3). These required pentafluorophenyl
active esters (R)-12 and (S)-17 were synthesised in 78%
and 84% yields, by addition of DCC to a stirred solution
of pentafluorophenol and the corresponding profens, 2-
phenylpropionic acid [(R)-18] and naproxen [(S)-19],
respectively, in dichloromethane (Scheme 5).

Figure 2 Racemic oxazolidinone (rac)-1, (rac)-14 and (rac)-16

We first probed the kinetic resolution of racemic oxazol-
idinones 1, 14 and 16 using these active esters (R)-12 and
(S)-17 (Scheme 6 and Scheme 7). For this study, we chose
to use two equivalents of racemic oxazolidinone, as this
would mirror our standard parallel kinetic resolution con-
ditions. These active esters (R)-12 and (S)-17 proved to be
moderately diastereoselective favouring formation of the
corresponding syn-adducts 13, 15 and 20 [for (R)-12] and

21, 22 and 23 [for (S)-17] as the major diastereoisomers
(Scheme 6 and Scheme 7). The stereochemistry of these
adducts was assigned by comparison with known deriva-
tives.8

With this information in hand, we next probed the parallel
resolution of Evans’ oxazolidinones (rac)-1, (rac)-14 and
(rac)-16 using an equimolar combination of quasi-enan-
tiomeric active esters (R)-12 and (S)-17  (Scheme 8). We
first probed the addition of an equimolar mixture of active
esters (R)-12 and (S)-17 to a stirred solution of the lithiat-
ed racemic oxazolidinone derived from (rac)-1 (2 equiv)
in THF at –78 °C (Scheme 8, entry 1). This resolution
gave the required pair of quasi-enantiomeric oxazol-
idinones syn-13 and syn-21 in good yield and excellent

Scheme 2 Parallel kinetic resolution of methyl 3-tert-butylcyclopentene carboxylate (rac)-9 using quasi-enantiomeric lithium amides (S)-7
and (R)-8
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Scheme 4 Parallel kinetic resolution of active ester (rac)-12 using quasi-enantiomeric oxazolidinones (R)-1 and (S)-14
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Figure 3 quasi-Enantiomeric profens (R)-12 and (S)-17
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diastereoselectivity (Scheme 8). These oxazolidinones
were efficiently separated by column chromatography to
give the diastereoisomerically pure adducts syn-13 in 65%
yield and syn-21 in 61% yield, respectively. For the re-
maining quasi-enantiomeric oxazolidinones (rac)-14 and
(rac)-16, these gave similar pairs of quasi-enantiomeric
adducts syn-15 and syn-22 in 57% and 59% yields, and
syn-20 and syn-23 in 55% and 59% yields, respectively,
with high levels of diastereoselectivity (Scheme 8, entries
2 and 3).

Our attention next turned to the use of naproxen (19) and
ibuprofen (24) as complementary quasi-enantiomeric re-
solving agents (Scheme 9). We chose to use a quasi-enan-
tiomeric combination of active esters (S)-17 and (R)-25,
as this would be structurally similar to our previous study
(Scheme 8 and Scheme 9). The required active ester, (R)-
25, was efficiently synthesised in 79% yield by addition of
DCC to a stirred solution of pentafluorophenol and (R)-
ibuprofen (24) in dichloromethane (Scheme 9). Addition
of the lithiated racemic oxazolidinone, derived from
(rac)-1 (2 equiv), to a stirred solution of active esters (S)-
17 and (R)-25 in THF at –78 °C, gave the required pair of
complementary quasi-enantiomeric syn-adducts 21 and
26 with high stereocontrol (Scheme 9). These adducts
were efficiently separated by column chromatography to
give the corresponding diastereoisomerically pure ad-
ducts in good yields.

In conclusion, we report an efficient parallel kinetic reso-
lution of racemic Evans’ oxazolidinones using a combina-
tion of quasi-enantiomeric profens. This methodology9

appears to be efficient for a variety of structurally related
oxazolidinones (e.g., 1) and quasi-enantiomeric profens
[e.g., (S)-17 and (R)-25)], and is predictable leading to the
required separable, diastereoisomerically pure, syn-ad-
ducts 21 and 26 in good yield. We are now in the process
of investigating the origin of these diastereoselective
addition–elimination processes and this study will be re-
ported in due course.

Scheme 7 Kinetic resolution of racemic oxazolidinones 1, 14 and 16 using active ester (S)-17
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(Ar) cm–1. 1H NMR (270 MHz, CDCl3): d = 7.64 (1 H, d, 
J = 7.7 Hz, CH, Ar), 7.52 (1 H, d, J = 7.7 Hz, CH, Ar), 7.35 
(1 H, br s, CH, Ar), 7.30–7.05 (5 H, m, 6 × CH, Ar and Ph), 
6.88 (2 H, d, J = 7.7 Hz, 2 × CH, Ar), 5.46 (1 H, dd, J = 9.2, 
5.2 Hz, CHN), 5.20 (1 H, q, J = 6.9 Hz, CHCO), 4.63 (1 H, 
t, J = 8.9 Hz, CHAHBO), 4.05 (1 H, dd J = 8.9, 5.2 Hz, 
CHAHBO), 3.92 (3 H, s, CH3, CH3O), 1.44 (3 H, d, J = 6.9 
Hz, CH3CH). 13C NMR (100.6 MHz, CDCl3): d = 173.3 
(C=O), 157.7 (C=O), 153.1 (i-COCH3, Ar), 138.2 (i-C, Ar), 
135.2 (i-C, Ar), 133.7, 129.4, 128.9, 128.5, 127.4, 127.1, 
126.4, 126.0, 118.8 and 105.5 (10 × C, Ar and Ph), 69.6 
(CHN), 57.9 (CH2O), 55.3 (CH3O), 43.9 (CHCO), 18.8 
(CH3). MS: m/z calcd for C23H22NO4: 376.1549; found: 
376.1553 [MH+].
Oxazolidinone syn-26: mp 97–99 °C; Rf = 0.47 [light PE 
(40–60 °C)–Et2O (1:1)]; [a]D

24 –99.1 (c 0.4, CHCl3). IR 

(CHCl3): nmax = 1779 and 1705 (CO), 1514 (Ar) cm–1. 1H 
NMR (270 MHz, CDCl3): d = 7.28–7.15 (3 H, m, 3 × CH, 
Ph), 7.0 (4 H, s, 4 × CH, Ar), 6.90 (2 H, d, J = 7.9 Hz, 
2 × CH, Ph), 5.44 (1 H, dd, J = 9.2, 5.2 Hz, CHN), 5.09 (1 H, 
q, J = 6.9 Hz, CHCO), 4.63 (1 H, t, J = 9.2 Hz, CHAHBO), 
4.06 (1 H, dd, J = 8.9, 5.2 Hz, CHAHBO), 2.43 (2 H, d, J = 
7.4 Hz, CH2CHCH3), 1.89–1.79 [1 H, m, CH(CH3)2], 1.38 (3 
H, d, J = 6.9 Hz, CH3CHCO), 0.90 [6 H, d, J = 6.7 Hz, 
2 × CH3, (CH3)2CH)]. 13C NMR (100.6 MHz, CDCl3): d = 
174.3 (C=O), 153.3 (C=O), 140.7, 139.4 and 137.4 (3 × i-C, 
Ar and Ph), 129.3, 129.2, 128.7, 127.9, 125.8 (5 × CH, Ar 
and Ph), 69.7 (NCH), 58.1 (CH2O), 45.1 (CHCO), 42.7 
(CH2Ar), 30.2 [CH(CH3)2], 22.4 [CH(CH3)2], 19.4 
[CH3CH]. MS: m/z calcd for C22H26NO3: 352.1913; found: 
352.1909 [MH+].).
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