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Abstract: Reductive lithiation of 1,1,5,5-tetrakis(phenylthio)-
2,2,3,3,4,4-hexamethyl-2,3,4-trisilapentane or deprotonation of
1,5-bis(phenylthio)-2,2,3,3,4,4-hexamethyl-2,3,4-trisilapentane
gave 1,5-bis(phenylthio)-1,5-dilithio-2,2,3,3,4,4-hexamethyl-
2,3,4-trisilapentane  which  was  silylated  with  dichlorodimethyl-
silane   or  1,2-dichloro-1,1,2,2-tetramethyldisilane   to  give  the
corresponding    tetrasilacyclohexane   or   pentasilacycloheptane,
respectively.  The tetrasilacyclohexane  was   transformed   by re-
ductive lithiation   and  sequential  silylation  to  2,2,3,3,4,4,6,6,7,7-
decamethyl-2,3,4,6,7-pentasilabicyclo[3.1.1]heptane and
2,2,3,3,4,4,6,6,7,7,8,8-dodecamethyl-2,3,4,6,7,8-hexasilabicyclo-
[3.2.1]octane. 
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In view of the fact that s-electrons of such acyclic linkage
as -Si-Si-C- or -Si-Si-Si-Si-C- have recently been sug-
gested to be delocalized along the acyclic framework (s-
conjugation),1,2 cage compounds containing -(Si)n- bridg-
es connected via bridgehead carbons are an attractive sub-
ject of research. We very recently reported that lmax of
1,2,4,5-tetrasilacyclohexane and 2,3,5,6,7,8-hexasilabi-
cyclo[2.2.2]octane exhibited a bathochromic shift as com-
pared with an acyclic standard. This observation suggests
the possibility of three-dimensional s-conjugation in the
cage molecules with disilane moieties.3 To gain further in-
sight into the nature of s-conjugation in polysilacycloal-
kanes, it is intriguing to synthesize bicyclic
polysilacycloalkane 1 containing a trisilane bridge
(Scheme 1). However, efficient synthetic methods for
such compounds are rare,4 and, hence, we felt it necessary
to establish a convenient synthetic method for 1.5 We re-
port here a facile solution for the synthesis of cyclic and
cage compounds having a -Si-Si-Si- unit based on the si-
lylation of 1,5-bis(phenylthio)-1,5-dilithio-2,3,4-trisila-
pentane.

For the dianion reagent with a trisilane unit, we designed
1,5-bis(phenylthio)-1,5-dilithio-2,3,4-trisilapentane 4,
wherein a phenylthio group could facilitate its generation,
stabilize 4, and be easily reduced by lithium radical anions
to afford requisite dianion reagent 2 via initial polysila-
carbocycle 3. 

Scheme 1

At first, bis(phenylthio)methyllithium was generated
from bis(phenylthio)methane and silylated with 1,3-
dichloro-1,1,2,2,3,3-hexamethyltrisilane to give trisilane
5 in 71% yield. Treatment of 5 with lithium 4,4’-di-tert-
butylbiphenylide (LDBB) in THF at -78 °C and then with
dichlorodimethylsilane gave 1,2,3,5-tetrasilacyclohexane
6a as a diastereomeric mixture (cis : trans = 1 : 1) (run 1-
3).6 When silylation was effected at -98 or -78 °C, 6a was
produced in 47-50% yield (run 1 and 2); the yield de-
creased in the reaction at -30 °C (run 3). Although the
yields are moderate, the results are of synthetic value con-
sidering  the  steric factors of octamethyltetrasilacyclo-
hexane ring formation. Similarly, silylation of 4 with 1,2-
dichloro-1,1,2,2-tetramethyldisilane at -78 °C yielded the
corresponding 7-membered ring 6b in 69% yield (run 4),
whereas no cyclized product was obtained upon use of
1,3-dichloro-1,1,2,2,3,3-hexamethyltrisilane (run 5).

Since separation of the polysilacycloalkanes from the
contaminants like benzenethiol entailed a tedious proce-
dure, 4 was alternatively generated by deprotonation of 7
with a base. Trisilane 7 was prepared by treatment of phe-
nylthiomethyllithium with 1,3-dichloro-1,1,2,2,3,3-hex-
amethyltrisilane in THF at -78 °C in 65% yield. Treatment
of 7 (1 mol) with a base (2.2 mol) under various condi-
tions was followed by silylation with dichlorodimethylsi-
lane as shown in eq. 1.7 The most effective was the use of
s-BuLi at -30 °C, giving 6a in 51% yield, comparable to
the yield via the reductive lithiation protocol. 
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Table 1  Synthesis of 6 via reductive lithiation of 5
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Equation 1

With 6a in hand, we next studied the generation of a cyclic
dianion reagent and its cyclization toward the cage com-
pounds (Scheme 2). Treatment of 6a with LDBB in THF
at -78 °C effectively produced cyclic 1,3-dianion reagent
2 (m = 1) which, upon quenching with aq. NH4Cl, gave
1,2,3,5-tetrasilacyclohexane 8 in 82% yield. Silylation of
2 (m = 1) with dichlorodimethylsilane or 1,2-dichloro-
1,1,2,2-tetramethyldisilane at -40 °C proceeded success-
fully, giving rise to 2,3,4,6,7-pentasilabicyclo[3.1.1]hep-
tane 98 or 2,3,4,6,7,8-hexasilabicyclo[3.2.1]octane 109 in
62% or 63% yields, respectively. Since 6a was proved to
be a 1 : 1 diastereomeric mixture, the fact that the yields
of 9 and 10 were over 50% indicates that epimerization at
the lithiated carbons was faster than the cyclization at -40
°C. 

Scheme 2

The UV absorption spectra of octamethyltrisilane, 8, 9,
and 10 were measured in cyclohexane (1x10-4 M) at room
temperature. As shown in Figure 1, lmax originated from
a trisilane linkage of octamethyltrisilane (217 nm, e =
7590), 8 (223 nm, e = 6130), 9 (225 nm, e = 5720), and 10
(223 nm, e = 7780) exhibited a bathochromic shift when
the dimensions of the molecular structure increased.

UV spectra of octamethyltrisilane, 8, 9, and 10

Figure 1

In summary, we have demonstrated that 1,5-bis(phenyl-
thio)-1,5-dilithio-2,3,4-trisilapentane 4 is effective for the
synthesis of such cyclic compounds as 1,2,3,5-tetrasilacy-
clohexane 6a and 1,2,3,5,6-pentasilacycloheptane 6b. In
addition, the synthesis of the cage compounds 2,3,4,6,7-
pentasilabicyclo[3.1.1]heptane 9 and 2,3,4,6,7,8-hexasi-
labicyclo[3.2.1]octane 10 was accomplished using 6a as a
common precursor. Further synthetic and spectroscopic
studies on polysilacycloalkanes are in progress. 
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