August 1994 SYNTHESIS 765

Studies on Isocyanides and Related Compounds: A Novel Synthesis of Pyrroles via Ugi Reaction

Ricardo Bossio, Stefano Marcaccini,* Roberto Pepino

CNR, Centro di Studio sulla Chimica e la Struttura dei Composti Eterociclici e loro Applicazioni, Dipartimento di Chimica Organica "Ugo Schiff", Università di Firenze, via Gino Capponi 9, I-50121 Firenze, Italy

Received 14 March 1993

A series of N-substituted 1,3-diaryl-4-cyano-2,5-dihydro-5-oxopyrrole-2-carboxamides 9 is obtained by reacting arylglyoxal anils 6 with isocyanides 3 and cyanoacetic acid (2). Compounds 9 react quickly with diazomethane to give N-substituted 1,3-diaryl-4-cyano-5-methoxypyrrole-2-carboxamides 12.

In continuation of our studies on the synthesis of heterocyclic compounds from isocyanides we have described a novel synthesis of furan derivatives based on the Passerini reaction between arylglyoxals 1, cyanoacetic acid (2), and isocyanides 3. This reaction affords N-substituted 3-aryl-2-cyanoacetoxy-3-oxopropionamides 4 which are cyclized to N-substituted 3-aryl-4-cyano-2,5-dihydro-5-oxofuran-2-carboxamides 5.

Scheme 1

In order to evaluate the possibility of extending this method to the preparation of pyrrole derivatives, we have attempted to perform the above reactions by employing arylglyoxal anils 6 in the place of arylglyoxals 1.

The first step of this synthesis consists of the preparation of the arylglyoxals anils 6 by refluxing freshly prepared arylglyoxals 1 with amines 7 in toluene, while the water

Table 1. Compounds 9a-h Prepared

Prod- uct ^a	Yield (%) ^{b, c}	mp (°C) (solvent)	IR (KBr) ν (cm ⁻¹)
9a	42	220-223	3413 (NH), 2232 (CN), 1693 (CO),
		(EtOH/DMF)	1660 (CO)
9b	48	204-206	3303 (NH), 2227 (CN), 1721 (CO),
		(EtOH/DMF)	1651 (CO)
9c	51	256-258	3290 (NH), 2232 (CN), 1711 (CO),
		(EtOH/DMF)	1652 (CO)
9d	57	253-255	3293 (NH), 2228 (CN), 1703 (CO),
		(EtOH/DMF)	1649 (CO)
9e	55	215-217	3286 (NH), 2227 (CN), 1708 (CO),
		(EtOH/DMF)	1645 (CO)
9f	60	235-236	3285 (NH), 2228 (CN), 1710 (CO),
		(EtOH/DMF)	1645 (CO)
9g	40	155-159	3313 (NH), 2231 (CN), 1708 (CO),
		(EtOH)	1657 (CO)
9h	43	222-223	3289 (NH), 2230 (CN), 1705 (CO),
		(EtOH)	1656 (CO)

^a Satisfactory microanalyses obtained: $C \pm 0.25$, $H \pm 0.24$, $N \pm 0.20$.

1	Ar	7	Ar ¹	6	Ar	Ar1
a	C ₆ H ₅	a	C ₆ H ₅	а	С ₆ ^н 5	С ₆ ^Н 5
b	4-C1C6H4	b	3-C1C6H4	b	C6H5	3-C1C6H4
		c	4-C1C6H4	c	C6H5	4-C1C6H4
3	R	đ	4-CH3C6H4	đ	с ₆ н ₅	4-CH ₃ C ₆ H ₄
a	°-C6H11				4-C1C6H4	с ₆ н ₅
	<u>n</u> -C ₆ H ₁₃			f	4-C1C6H4	4-C1C6H4

8, 9	, 10,	11, 12	Ar	Arl	R
		a	С ₆ н ₅	^С 6 ^Н 5	<u>c</u> -C ₆ H ₁₁
		b	С ₆ н ₅	3-C1C ₆ H ₄	<u>c</u> -C ₆ H ₁₁
		c	C6H5	4-C1C6H4	<u>c</u> -C ₆ H ₁₁
		đ	C6H5	4-CH ₃ C ₆ H ₄	C-C6H11
		е	4-C1C6H4	C6H5	<u>c</u> -C6 ^H 11
		f	4-ClC ₆ H ₄	4-C1C6H4	<u>c</u> −C6 ^H 11
		g	4-C1C6H4	с ₆ н ₅	n-C6H13
		h	4-C1C6H4	4-C1C6H4	$\frac{n-C}{6}^{H}$ 13

b Yield of pure isolated product.

^c Based on 1.

766 Short Papers SYNTHESIS

Table 2. Compounds 12a-h Prepared

Prod- uct ^a		mp (°C) (solvent)	IR (KBr) ν (cm ⁻¹)	1 H NMR (CDCl ₃ /TMS) δ , J (Hz)
12a	83	235-238 (EtOH)	3275 (NH), 2225	0.70-1.61 (m, 10H _{cyclohexane}), 3.52-3.67 (m, 1H, 1-H _{cyclohexane}), 4.19 (s, 3H, OCH ₃), 5.20
12b	89	(EtOH) 249–251 (EtOH)	(CN), 1632 (CO) 3259 (NH), 2220 (CN), 1630 (CO)	(d, 1H, $J = 8.4$, NH), 7.26–7.51 (m, 10H _{arom}) 0.71–1.73 (m, 10H _{cyclohexane}), 3.60–3.77 (m, 1H, 1-H _{cyclohexane}), 4.21 (s, 3H, OCH ₃), 5.23 (d, 1H, $J = 7.6$, NH), 7.17–7.51 (m, 9H _{arom})
12c	83	255–257 (EtOH)	3260 (NH), 2221 (CN), 1630 (CO)	$(0.69-1.61 \text{ (m, } 10H_{\text{cyclohexane}}), 3.50-3.66 \text{ (m, } 1H, 1-H_{\text{cyclohexane}}), 4.20 \text{ (s, } 3H, OCH_3), 5.22 \text{ (d, } 1H, J=8.3, NH), 7.20-7.47 \text{ (m, } 9H_{\text{erom}})$
12d	80	227–230 (EtOH)	3250 (NH), 2217 (CN), 1630 (CO)	0.69-1.73 (m, 10 H _{arom}), 2.44 (s, 3 H, CH ₃), 3.52-3.67 (m, 1 H, 1-H _{cyclohexane}), 4.19 (s, 3 H,
12e	81	206-209	3296 (NH), 2220	OCH ₃), 5.20 (d, 1H, $J = 7.7$, NH), 7.15–7.50 (m, 9H _{arom}) 0.73–1.63 (m, 10H _{cyclohexane}), 3.53–3.68 (m, 1H, 1-H _{cyclohexane}), 4.19 (s, 3H, OCH ₃), 5.15
12f	81	(<i>i</i> -PrOH) 218–219 (<i>i</i> -PrOH)	(CN), 1640 (CO) 3302 (NH), 2215 (CN), 1639 (CO)	(d, 1H, $J = 7.6$, NH), $7.26-7.48$ (m, $9H_{arom}$) $0.69-1.64$ (m, $10H_{cyclohexane}$), $3.52-3.68$ (m, 1H, $1-H_{cyclohexane}$), 4.19 (s, 3H, OCH ₃), 5.20 (d, 1H, $J = 8.3$, NH), $7.16-7.49$ (m, $8H_{arom}$)
12g	73	(<i>i</i> -PrOH)	3329 (NH), 2217 (CN), 1644 (CO)	0.81-1.26 (m, 11 H _{hexane}), 3.00-3.10 (m, 2H, NHCH ₂), 4.19 (s, 3H, OCH ₃), 5.23-5.35 (m,
12h	76	138–141 (<i>i</i> -PrOH)	3299 (NH), 2215 (CN), 1643 (CO)	1H, NH), 7.25–7.50 (m, 9 H_{arom}) 0.82–1.28 (m, 11 H_{hexane}), 3.01–3.11 (m, 2H, NHC \underline{H}_2), 4.20 (s, 3H, OCH ₃), 5.25–5.36 (m, 1H, NH), 7.19–7.49 (m, 8 H_{arom})

Satisfactory microanalyses obtained: $C \pm 0.30$, $H \pm 0.23$, $N \pm 0.25$.

formed during condensation is continuously removed by means of a Dean-Stark apparatus. Attempts to isolate the anils 6 in a pure form either by distillation or chromatographic methods were unsuccessful, confirming the results of a previous work.³

The reaction between arylglyoxals 1, cyanoacetic acid (2), and isocyanides 3 takes place quickly; in contrast, the reaction between arylglyoxal anils 6, cyanoacetic acid (2), and isocyanides 3 is slow. After 24 h at room temperature compounds 8a,b are obtained in very low yields. By employing longer reaction periods the yields of 8 increase, but a mixture of 8 and 9 is always found, owing to the high tendency of compounds 8 to cyclize, even in the absence of a base. Upon treatment of the reaction mixture with triethylamine, a solution of the olates 10, arising from the base-induced cyclization of 8 and the deprotonation of 9, is obtained. Upon treatment of this solution with aqueous hydrochloric acid, N-substituted 1,3-diaryl-4-cyano-2,5-dihydro-5-oxopyrrole-2-carboxamides 9 are obtained in fair yields.

Compounds 9 react very quickly with diazomethane to give N-substituted 1,3-diaryl-4-cyano-5-methoxypyrrole-2-carboxamides 12 in high yields. This may be explained on the basis of the high acidity of the OH group of the tautomers 11.4

Mps were determined using a Büchi 512 melting point apparatus and are uncorrected. 1H NMR spectra were obtained using a Varian Gemini 200 spectrometer. IR spectra were recorded on a Perkin-Elmer 881 spectrophotometer. Microanalyses were obtained using a Perkin-Elmer 240 elemental analyzer. Isocyanide 3a is commercially available. Isocyanide $3b^5$ and arylglyoxals $1a^6$ and $1b^7$ were prepared following literature procedures. Compunds 8a, b gave correct microanalyses: $C \pm 0.31$, $H \pm 0.23$, $N \pm 0.22$.

N-Substituted 1,3-Diaryl-4-cyano-2,5-dihydro-5-oxopyrrole-2-carboxamides 9; General Procedure:

A solution of 1 (22 mmol) and 7 (22 mmol) in toluene (120 mL) was refluxed for 20 min in a Dean–Stark apparatus. The resulting solution of the crude 6 was evaporated to ca. 10 mL under reduced pressure and then treated with a saturated solution of 2 (2.15 g, 25.3 mmol) in $\rm Et_2O$ and a solution of 3 (22 mmol) in $\rm Et_2O$ (10 mL).

The resulting mixture was allowed to react at r.t. for 6 d and then evaporated to dryness. The residue was stirred with EtOH (40 mL) and the resulting suspension was treated dropwise with NEt₃ (2.56 g, 25.3 mmol). The resulting solution was stirred for 10 min at r.t., then cooled at 5° C and treated dropwise with 6 N HCl until pH = 4. The resulting suspension was filtered to give 9.

N-Substituted 2-(N-Aryl-N-cyanoacetyl)amino-3-oxo-3-phenylpropionamides 8; General Procedure:

These products were obtained by reacting the crude anils 6a,b with 2 and 3a as described for the preparation of compounds 9, except that the reaction mixture was filtered after 24 h at r.t. The collected products were washed with Et_2O , then with EtOH and Et_2O again. Attempts to increase the purity of 8 by recrystallization failed since a partial cyclization took place.

2-(N-Cyanoacetyl-N-phenyl) amino-N-cyclohexyl-3-oxo-3-phenyl-propionamide (8a);

Yield: 0.71 g (8%); mp 138-141°C.

IR (KBr): v = 3300, 1678, 1649 cm⁻¹.

2-[N-(3-Chlorophenyl)-N-cyanoacetyl]amino-N-cyclohexyl-3-oxo-3-phenylpropionamide (8b):

Yield: 1.06 g (11 %); mp 140-143 °C.

IR (KBr): v = 3295, 1679, 1645 cm⁻¹.

N-Substituted 1,3-Diaryl-4-cyano-5-methoxypyrrole-2-carboxamides 12; General Procedure:

A saturated solution of 9 (2.5 mmol) in CHCl₃ was treated with a large excess of $\mathrm{CH_2N_2}$ in $\mathrm{Et_2O}$ and allowed to react at r.t. for 10 h. The resulting solution was evaporated to dryness and the residue was recrystallized from a suitable solvent.

- (1) Marcaccini, S.; Torroba, T. Org. Prep. Proc. Int. 1993, 25, 141.
- (2) Bossio, R.; Marcaccini, S.; Pepino, R.; Torroba, T. Synthesis 1993, 783.
- (3) Prato, M.; Scorrano, G.; Quintily, V. Gazz. Chim. Ital. 1984, 114, 405.
- (4) For a discussion on the tautomeric equilibria in analogous furan derivatives see lit. 2.
- (5) Lipp, M.; Dallaker, F.; Köcker, I.M. Monatsh. Chem. 1959, 90, 41
- (6) Riley, H.A.; Gray, A.R. Org. Synth. Coll. Vol. 2 1948, 509.
- (7) Venien, F.; Brault, A.; Kerfanto, M. C. R. Acad. Sci. Paris, Ser. C 1959, 90, 41.

b Yield of pure isolated product.