# The conversion of racemic terminal epoxides into either (+)- or (–)-diol $\gamma$ - and $\delta$ -lactones

# Zhi-Yu Liu,\*<sup>a</sup> Jian-Xin Ji<sup>b</sup> and Bo-Gang Li<sup>b</sup>

<sup>a</sup> Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China. E-mail: zhiyuliu@pub.sioc.ac.cn

<sup>b</sup> Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

Received (in Cambridge, UK) 11th May 2000, Accepted 17th August 2000 First published as an Advance Article on the web 2nd October 2000

The conversion of racemic terminal epoxides into either (+)- or (-)-diol  $\gamma$ - and  $\delta$ -lactones is described with hydrolytic kinetic resolution (HKR) as the key step.

Hydrolytic kinetic resolution (HKR) as developed by Jacobsen's group<sup>1</sup> provided practical access to both terminal epoxides and 1,2-diols in excellent ee using (R,R)-(salen)-Co(OAc) complex A as the catalyst and water as the only reagent. However, HKR afforded two kinds of compounds, epoxides and diols, with the opposite configuration and the two products have to be separated for further use in most cases.<sup>2-5</sup> Considering the advantages of configuration inversion of terminal epoxides in the reaction of intramolecular ring opening of the epoxide, we are interested in designing a proper procedure to convert the two products of HKR into the same diol  $\gamma$ - or  $\delta$ -lactones (Scheme 1) in the theoretical maximum yield of 100% from racemic terminal epoxides.

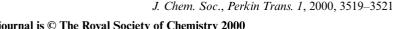
Optically active diol  $\gamma$ - and  $\delta$ -lactones are important intermediates in the synthesis of natural products and biologically active compounds.<sup>6-11</sup> Until now, (R)-(-)-diol  $\gamma$ -lactone could be obtained starting from its (S)-(+)-enantiomer,<sup>12</sup> which was prepared from (S)-(+)-glutamic acid.<sup>13</sup> (S)-(+)- $\delta$ -Lactone could be obtained starting from the expensive commercially available tri-O-acetyl-D-glucal<sup>10</sup> or from D-mannitol<sup>14</sup> by a relative long route. In the present work, either (+)- or (-)-diol  $\gamma$ - and  $\delta$ -lactones were prepared from racemic terminal epoxides in high yields and excellent ee with HKR as the key step.

# **Results and discussion**

At first, the HKR of racemic terminal epoxides gave optically active epoxides and diols, which were separated from the reaction mixture and converted into the corresponding lactones.

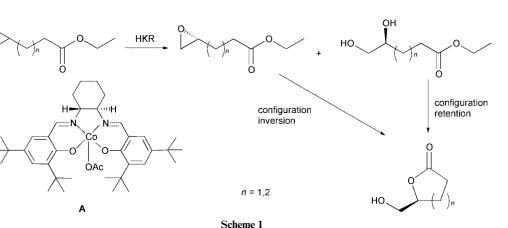
The epoxidation of 1a with MCPBA gave 2a (Scheme 2), which was proposed to undergo HKR by the general procedure to afford epoxide 3a and diol 4a. In fact, the lactone 5a in 50% yield and 94% ee, not the diol 4a, was separated from the mixture of products as well as the epoxide 3a in 45% yield. Evidently, the lactonization of diol 4a occurred spontaneously. Subsequent treatment<sup>12</sup> of 3a with TFA gave the same lactone 5a in 87% yield and 96% ee.

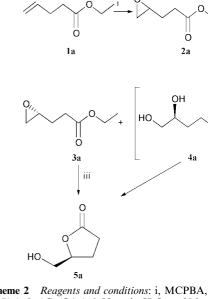
Terminal epoxide 2b was prepared by the epoxidation of 1b with MCPBA. Similarly, treatment of 2b under the general procedure of HKR afforded epoxide 3b in 46% yield and diol 4b in 49% yield. Unfortunately, the conversion of 3b to 5b with TFA using the same procedure as for 5a gave an unsatisfactory yield. The successful lactonization of 3b by a two-step procedure (Scheme 3), hydrolysis with LiOH and lactonization with CSA gave lactone 5b in 86% overall yield and 98% ee. The same lactone was obtained by lactonization of diol 4b in the presence of H<sup>+</sup>-exchange resin in 89% yield and 95% ee.


It is more convenient that 5a and 5b could also be obtained directly by a one-pot procedure from the mixture of the products of HKR reaction. Treatment of the mixture of 3a and 4a with TFA gave 5a in 88% yield and 95% ee. Hydrolysis of the mixture of 3b and 4b gave a mixture of crude products, subsequent treatment of which with CAS gave 5b in 83% yield and 96% ee. The enantiomers of 4a and 4b were obtained when the (S,S)-(salen)Co(OAc) complex was used for HKR.

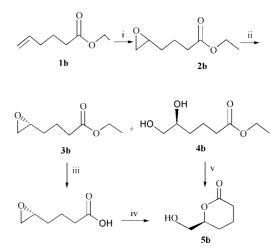
Thus, we have developed a practical and efficient method to convert racemic terminal epoxides into either (+)- or (-)-diol  $\gamma$ - and  $\delta$ -lactones in high chemical yield and excellent ee via HKR and simple transformations.

# Experimental


#### General details


IR spectra were recorded as neat films on a Bio-Rad FTS-185




DOI: 10.1039/b0037931

This journal is © The Royal Society of Chemistry 2000





Scheme 2 Reagents and conditions: i, MCPBA, 6 h, 91%; ii, 1% mol (R,R)-(salen)Co(OAc), 0.55 equiv. H<sub>2</sub>O, rt, 30 h, 45% of **3a**, 50% of **5a**; iii, TFA, -10 °C, 15 min, 87%.



Scheme 3 Reagents and conditions: i, MCPBA, 6 h, 93%; ii, 1% mol (R,R)-(salen)Co(OAc), 0.55 equiv. H<sub>2</sub>O, rt, 30 h, 46% of **3b**, 49% of **4b**; iii, LiOH, H<sub>2</sub>O, THF; iv, CSA, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, 15 min, 86%; v, Amberlyst-15, a few 4 Å molecular sieves, CH<sub>3</sub>CN, 30 °C, 3 h, 89%.

spectrometer. <sup>1</sup>H NMR spectra were determined with TMS as an internal standard in CDCl<sub>3</sub> at 300 MHz on a Bruker AM-300 spectrometer; *J* values are given in Hz. Mass spectra were obtained on a HP-5989A spectrometer using the electron impact technique. Microanalysis was performed using an Elementar Vario EL. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. Enantiomeric excesses were determined by HPLC analysis with an Chiralpak AS column. Solvents were dried and distilled prior to use. Flash column chromatography was conducted silica gel H (100–400 mesh) from Qingdao Haiyang Chemical Works.

Compounds  $1a^{15}$  and  $1b^{16}$  were prepared by literature methods.

#### Ethyl 4,5-epoxypentanoate (2a)

To a solution of **1a** (2.56 g, 20 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (100 mL) was added MCPBA (5.05 g, 22 mmol). After stirring for 6 h, the reaction mixture was diluted with ether, washed with sat. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (20 mL), sat. Na<sub>2</sub>CO<sub>3</sub> (20 mL), brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was subjected to distillation to afford **2a** (2.6 g, 93% yield). Bp 76 °C/5 Torr (Found: C, 58.11; H, 8.41. C<sub>7</sub>H<sub>12</sub>O<sub>3</sub> requires: C, 58.32; H, 8.39%);  $\nu_{max}/cm^{-1}$  1182, 1736;  $\delta_{H}$  4.10 (q, *J* = 7.6, 2H),

2.95 (m, 1H), 2.72 (m, 1H), 2.45 (m,1H), 2.44–2.38 (t, J = 7.4, 2H), 2.0–1.85 (m, 1H), 1.80–1.65 (m, 1H), 1.25 (t, J = 7.2, 3H); m/z 145 (M<sup>+</sup> + 1, 2%), 115 (14), 99 (56), 85 (57), 71 (99), 55 (100).

# General procedure of HKR

To a mixture of terminal epoxide (10 mmol) and (R,R) or (S,S)-(salen)Co(OAc) complex (34 mg, 0.05 mmol), water (100 mg, 0.55 mmol) was slowly added and the reaction mixture was stirred at rt for 30 h after the addition. The optically active epoxide and diol were isolated together from the reaction mixture by bulb-to-bulb distillation and subsequent flash chromatography of the distillate gave epoxide (hexane–EtOAc, 9:1) and diol (hexane–EtOAc, 2:8).

# Ethyl (R)-(+)-4,5-epoxypentanoate (3a)

Treatment of **2a** (1.44 g, 10 mmol) under the general procedure of HKR using (*R*,*R*)-(salen)Co(OAc) complex as the catalyst gave **3a** (0.65 g, 45% yield).  $[a]_{D}^{20} = +16.9$  (*c* 0.9, CHCl<sub>3</sub>). The other spectra data were identical in all respects to those of **2a**.

# Method A for (S)-(+)- $\gamma$ -hydroxymethyl- $\gamma$ -butyrolactone (5a)

Treatment of **2a** (2.56 g, 20 mmol) under the general procedure of HKR using (*R*,*R*)-(salen)Co(OAc) complex as the catalyst gave **5a** (580 mg, 50% yield, 94% ee). The ee value of **5a** was determined by chiral HPLC using a Chiralpak AS column with UV detection (201 nm) and an eluant of propan-2-ol-heptane (4:6). Peaks were observed at 10.81 and 12.41 min. [*a*]<sub>D</sub><sup>20</sup> = +50.7 (*c* 1.2, CHCl<sub>3</sub>) [lit.<sup>12</sup> [*a*]<sub>D</sub> = +53.5 (*c* 5.7, CHCl<sub>3</sub>)];  $\nu_{max}/cm^{-1}$ 1192, 1767, 3400;  $\delta_{\rm H}$  4.63 (m, 1H), 3.95–3.82 (dd,  $J_1$ =12.5,  $J_2$  = 2.7, 1H), 3.70–3.60 (dd,  $J_1$ =12.5,  $J_2$ = 4.6, 1H), 2.70–2.35 (m, 1H), 2.34–2.10 (m, 1H); *m*/*z* 117 (M<sup>+</sup> + 1, 1%), 85 (100), 57 (17), 42 (11).

# Method B for 5a

A mixture of **3a** (287 mg, 2 mmol) and TFA (1 mL) was stirred at -10 °C for 15 min. Then benzene (10 mL) was added and most of the solvent was removed under vacuum. Purification of the residue by flash chromatography (EtOAC) gave **5a** (202 mg, 87% yield, 96% ee).  $[a]_{D}^{20} = +51.5$  (*c* 0.6, CHCl<sub>3</sub>).

#### One-pot procedure for 5a

HKR of **2a** (721 mg, 5 mmol) under the general procedure using (*R*,*R*)-(salen)Co(OAc) complex as the catalyst gave a mixture of epoxide and diol by bulb-to-bulb distillation. To the mixture was added TFA (2 mL) at -15 °C. After the solution was stirred at -10 °C for 15 min, benzene (25 mL) was added. Most of the solvent was removed *in vacuo* and purification of the residue by flash chromatography (hexane–EtOAc, 2:8) gave **5a** (510 mg, 88% yield, 95% ee).  $[a]_{D}^{20} = +51.1$  (*c* 0.9, CHCl<sub>3</sub>).

#### Ethyl 5,6-epoxyhexanoate (2b)

The same procedure as described for the preparation of **2a** was used. The epoxidation of **1b** (2.84 g, 20 mmol) with MCPBA (5.10 g, 22 mmol) gave **2b** (2.94 g, 93% yield). Bp 93 °C/5 Torr (Found: C, 60.49; H, 9.00. C<sub>8</sub>H<sub>14</sub>O<sub>3</sub> requires C, 60.74; H, 8.92%);  $v_{max}$ /cm<sup>-1</sup>1176, 1735;  $\delta_{H}$  4.16–4.08 (q, J = 7.1, 2H), 2.90 (m, 1H), 2.72 (m, 1H), 2.43 (m, 1H), 2.35 (t, J = 7.0, 2H), 1.87–1.70 (m, 2H), 1.68–1.40 (m, 2H), 1.23 (t, J = 7.5, 3H); m/z 159 (M<sup>+</sup> + 1, 1%), 113 (28), 84 (52), 71 (64), 55 (100).

#### Ethyl (R)-(+)-5,6-epoxyhexanoate (3b)

Treatment of **2b** (1.58 g, 10 mmol) under the general procedure of HKR using (*R*,*R*)-(salen)Co(OAc) complex as the catalyst gave **3b** (727 mg, 46% yield).  $[a]_{D}^{20} = +14.9$  (*c* 0.2, CHCl<sub>3</sub>). The other spectra data were identical in all respects to those of **2b**.

#### Ethyl (S)-(-)-5,6-dihydroxyhexanoate (4b)

Treatment of **2b** (1.58 g, 10 mmol) under the general procedure of HKR using (*R*,*R*)-(salen)Co(OAc) complex as the catalyst gave **4b** (862 mg, 49% yield).  $[a]_D^{20} = -14.1$  (*c* 2.0, EtOH) (Found: C, 54.47; H, 9.17. C<sub>8</sub>H<sub>16</sub>O<sub>4</sub> requires: C, 54.53; H, 9.15%); *v*<sub>max</sub>/ cm<sup>-1</sup> 1035, 1193, 1734, 3399;  $\delta_{\rm H}$  4.12 (q, *J* = 7.1, 2H), 3.70–3.56 (m, 2H), 3.46–3.30 (m, 2H), 3.28–3.15 (m, 1H), 2.22 (t, *J* = 7.3, 2H), 1.48–1.38 (m, 2H), 1.25 (t, *J* = 6.4, 3H); *m*/*z* 177 (M<sup>+</sup> + 1, 6%), 113 (98), 99 (91), 71 (100), 55 (79).

#### Method A for (S)-(+)- $\delta$ -hydroxymethyl- $\delta$ -valerolactone (5b)

A solution of **3b** (316 mg, 2 mmol) and LiOH (120 mg, 3 mmol) in THF-H<sub>2</sub>O (1:1, 10 mL) was stirred at rt for 1.5 h, acidified to a pH 4 and extracted with EtOAc. The combined extracts were dried over Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed in vacuo. To the resulting crude product in dry CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added CSA (46 mg, 0.2 mmol). After stirring at -5 °C for 20 min, the reaction was quenched with Et<sub>3</sub>N and the solvent was evaporated. Purification of the residue by flash chromatography (hexane–EtOAc, 2:8) gave  $\mathbf{5b}$  (224 mg, 86% overall yield from 4b, 98% ee). The ee value of 5b was determined by chiral HPLC using a Chiralpak AS column with UV (201 nm) and an eluant of propan-2-ol-heptane (2:8). Peaks were observed at 11.57 and 12.30.  $[a]_{D}^{20} = +34.5 (c \, 0.6, \text{CHCl}_3) [\text{lit.}^{10} [a]_{D}^{20} = +34.68 (c \, 1.3, \text{c})$ CHCl<sub>3</sub>)];  $v_{max}/cm^{-1}$  1055, 1248, 1725, 3403;  $\delta_{H}$  4.46–4.36 (m, 1H), 3.86–3.72 (m, 1H), 3.70–3.60 (m, 1H), 2.75 (m, 1H), 2.65– 2.55 (m, 1H), 2.50-2.40 (m, 1H), 2.0-1.80 (m, 3H), 1.78-1.60 (m, 1H); m/z 131 (M<sup>+</sup> + 1, 8%), 113 (15), 99 (100), 71 (75), 55 (45), 43(47).

# Method B for 5b

To a solution of **4b** (352 mg, 2 mmol) in CH<sub>3</sub>CN (10 mL) was added a catalytic amount of H<sup>+</sup>-ion-exchange resin (Amberlyst-15) and a few 4 Å molecular sieves. The reaction mixture was stirred at rt for 3.5 h, and then filtered. The solvent was removed *in vacuo*. Purification of the residue by flash chromatography (hexane–EtOAc, 2:8) gave **5b** (231 mg, 89% yield, 95% ee).  $[a]_{D}^{20} = +33.2$  (*c* 2.1, CHCl<sub>3</sub>).

# One pot procedure for 5b

HKR of **2b** (791 mg, 5 mmol) under the general procedure using (*R*,*R*)-(salen)Co(OAc) complex as the catalyst gave a mixture of epoxide **3b** and diol **4b** by bulb-to-bulb distillation. The mixture was diluted with THF–H<sub>2</sub>O (1:1, 50 mL) and LiOH·H<sub>2</sub>O (314 mg, 7.5 mmol) was added. The solution was stirred at rt for 1.5 h, acidified with KHSO<sub>4</sub> to pH 4 and extracted with EtOAc ( $3 \times 25$  ml). The combined extracts were dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed *in vacuo*. To the resulting crude product in CH<sub>2</sub>Cl<sub>2</sub> (45 mL), was added CSA (115 mg, 0.5 mmol) at -10 °C. After stirring at -10-+20 °C for 2 h, the reaction was quenched with Et<sub>3</sub>N, and the solvent was evaporated. Purification of the residue by flash chromatography (hexane–EtOAc, 2:8) gave **5b** (540 mg, 83% yield, 96% ee). [a]<sub>D</sub><sup>20</sup> = +34.0 (c 1.5, CHCl<sub>3</sub>).

#### Ethyl (S)-(-)-4,5-epoxypentanoate (3a')

Treatment of **2a** (1.44 g, 10 mmol) under the general procedure of HKR using (*S*,*S*)-(salen)Co(OAc) complex as the catalyst gave **3a**' (620 mg, 43% yield).  $[a]_{D}^{20} = -17.1$  (*c* 0.8, CHCl<sub>3</sub>). The other spectra data were identical in all respects to those of **2a**.

#### Method A for (R)-(-)- $\gamma$ -hydroxymethyl- $\gamma$ -butyrolactone (5a')

Treatment of **2a** (1.44 g, 10 mmol) under the general procedure of HKR using (*S*,*S*)-(salen)Co(OAc) complex as the catalyst gave **5a**' (580 mg, 50% yield, 95% ee).  $[a]_{D}^{20} = -51.5$  (*c* 1.5,

CHCl<sub>3</sub>) [lit.<sup>13</sup>  $[a]_D$  –53.5 (*c* 3.17, CHCl<sub>3</sub>)]. The other spectra data were identical in all respects to those of **5a**.

#### Method B for 5a'

Treatment of 3a' (285 mg, 2 mmol) by method B for 5a gave 5a' (207 mg, 89% yield, 96% ee).  $[a]_D^{20} = -51.9$  (*c* 2.1, CHCl<sub>3</sub>).

#### One-pot procedure for 5a'

Treatment of **2a** (720 mg 5 mmol) under the one-pot procedure as described for the preparation of **5a** except using (*S*,*S*)-(salen)Co(OAc) complex as the catalyst for HKR reaction gave **5a**' (522 mg, 90% yield, 95% ee).  $[a]_{D}^{20} = -51.6$  (c 2.2, CHCl<sub>3</sub>).

# Ethyl (S)-(-)-5,6-epoxyhexanoate (3b')

Treatment of **2b** (1.58 g, 10 mmol) under the general procedure of HKR using (*S*,*S*)-(salen)Co(OAc) complex as the catalyst gave **3b**' (711 mg, 45% yield).  $[a]_{D}^{20} = -15.0$  (*c* 1.1, CHCl<sub>3</sub>). The other spectra data were identical in all respects to those of **3b**.

# Ethyl (R)-(+)-5,6-dihydroxyhexanoate (4b')

Treatment of **2b** (1.58 g, 10 mmol) under the general procedure of HKR using (*S*,*S*)-(salen)Co(OAc) complex as the catalyst gave **4b**' (862 mg, 49% yield).  $[a]_{D}^{20} = -14.2$  (*c* 2.0, EtOH). The other spectra data were identical in all respects to those of **4b**.

# Method A for (R)-(-)- $\delta$ -hydroxymethyl- $\delta$ -valerolactone (5b')

Treatment of **3b**' (318 mg, 2 mmol) by method A for **5b** gave **5b**' (231 mg, 89% yield, 98% ee).  $[a]_D^{20} = -34.3$  (*c* 1.3, CHCl<sub>3</sub>) [lit.<sup>10</sup>  $[a]_D^{20} = +34.68$  (*c* 1.3, CHCl<sub>3</sub>) for its enantiomer]. The other spectra data were identical in all respects to those of **5b**.

#### Method B for 5b'

Treatment of **4b**' (350 mg, 2 mmol) by method B for **5b** gave **5b**' (234 mg, 90% yield, 96% ee).  $[a]_{D}^{20} = -33.5$  (*c* 1.0, CHCl<sub>3</sub>).

# One-pot procedure for 5b'

Treatment of **2b** (791 mg 5 mmol) under the one-pot procedure as described for the preparation of **5b** except using (*S*,*S*)-(salen)Co(OAc) complex as the catalyst for HKR gave **5b**' (527 mg, 81% yield, 96% ee).  $[a]_{\rm D}^{20} = -33.8$  (*c* 0.8, CHCl<sub>3</sub>).

# References

- 1 (a) M. Tokunaga, J. F. Larrow, F. Kakiuchi and E. N. Jacobsen, Science, 1997, **277**, 936; (b) S. E. Schaus, J. Branalt and E. N. Jacobsen, J. Org. Chem., 1998, **63**, 4876; (c) D. A. Annis and E. N. Jacobsen, J. Am. Chem. Soc., 1999, **121**, 4147.
- 2 M. K. Gurjar, B. V. N. B. S. Sarma, K. Sadalapure and S. Adhikari, *Synthesis*, 1998, 1424.
- 3 P. S. Savle, M. J. Lamoreaux, J. F. Berry and R. D. Gaudour, *Tetrahedron: Asymmetry*, 1998, **9**, 1843.
- 4 Q. Yu, Y. K. Wu, L. J. Xia, M. H. Tang and Y. L. Wu, Chem. Commun., 1999, 129.
- 5 P. B. Wyatt and P. Blakskjær, *Tetrahedron Lett.*, 1999, **40**, 6481.
- 6 J. W. Scott, in Asymmetric Synthesis, Academic Press, 1984, vol. 4, pp. 1–226.
- 7 K. Mori, Tetrahedron, 1975, 31, 3011.
- 8 J. P. Robin, O. Gringore and E. Brown, *Tetrahedron Lett.*, 1980, **21**, 2709.
- 9 S. Takano, M. Yonaga, K. Chiba and K. Ogasawara, *Tetrahedron Lett.*, 1980, **21**, 3697.
- 10 E. J. Corey, S. G. Pyne and W.-G. Su, *Tetrahedron Lett.*, 1983, 24, 4883.
- 11 R. M. Ortuño, J. Bigorra and J. Font, Tetrahedron, 1987, 43, 2199.
- 12 P.-T. Ho and N. Daviles, Synthesis, 1983, 462.
- 13 M. Taniguchi, K. Koga and S. Yamada, Tetrahedron, 1974, 30, 3547.
- 14 P. Pianetti and J.-R. Pougny, J. Carbohydr. Chem., 1988, 811.
  15 M. Gaudemar, Tetrahedron Lett., 1983, 24, 2749.
- 16 G. Cardinale, J. A. M. Leen and J. P. Ward, *Tetrahedron*, 1985, **41**,
- 2899.