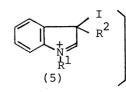

REACTION OF 1-SUBSTITUTED INDOLES WITH CARBOXYLIC ACIDS AND N-IODOSUCCINIMIDE

Sundo KWON and Nobuhiko KUROKI Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Mozu-umemachi, Sakai-shi 591

1-Substituted indoles reacted with carboxylic acids and N-iodosuccinimide to give 1-substituted-2,3-diacyloxyindolines in significant yields.

The direct introduction of an acyloxy function to the indole nucleus using carboxylic acids and related reagents is little known.¹⁾ The only known example is the benzoyloxylation of 2-phenylindole with benzoylperoxide.²⁾ Previously, it was described that the reaction of indoles and related compounds with puseudo halogens such as IN_3 , ISCN or $(SCN)_2$ provided a simple method for the preparation of various indole derivatives containing an azide or a thiocyanate function.^{3~6)}

Now we have found that 1-substituted indoles (1) (R^1 = benzoy1, tosy1) react with some carboxylic acids and N-iodosuccinimide (NIS)⁷⁾ to give 1-substituted-trans-2,3diacyloxyindolines (2a~f) (R^2 =H) and 1-substituted-2,3-dibenzoyloxy-3-methylindolines (2g,h) (R^2 =Me, R^3 =C₆H₅) in significant yields.



A solution of 1-benzoylindole(300mg,1.4mmol), benzoic acid(414mg,3.5mmol), and NIS(997mg,4.2mmol) in dry $CH_2Cl_2(25ml)$ was stirred 24 h at 40°C. The resulting solution was diluted with benzene(200ml), washed with 5% $Na_2CO_3,5$ % $Na_2S_2O_3$, and water, dried, and concentrated in vacuo. The oily residue was separated by preparative TLC using silica gel to give 1-benzoyl-trans-2,3-dibenzoyloxyindoline(2a)(331mg, mp 141-143°C,⁸⁾ and 1-benzoyl-3-benzoyloxyindole(3)(16mg,3%), mp 182°C⁹⁾ as a minor product.¹⁰⁾ The structure of (2a) was assigned on the basis of following spectral data. The IR spectrum(KBr) displayed a strong ester absorbtion band at 1720cm⁻¹ and the NMR spectrum(CDCl₃) showed a sharp singlet at **6** 6.20(3-H), 6.84(2-H), and a multiplet for aromatic hydrogens between **6** 7.0 and 8.1. The trans conformation of two benzoyloxy groups was assigned on the basis of the coupling constant($J_{2,3} = 0$ Hz)

between 2-H and 3-H.¹¹⁾ In contrast to the case of NIS, the reaction using N-bromosuccinimide gave only 1-benzoy1-3-bromoindole, mp 97°C (lit.¹²⁾ 97-98°C). Furthermore, no reaction using N-chlorosuccinimide occurred at all after 48 h.

Similar treatment of 1-benzoylindole, 1-tosylindole with carboxylic acids¹³⁾ using NIS gave the corresponding 1-substituted-trans-diacyloxyindolines (2a~f). The results were summarized in table 1. Table 1 also showed the physical data of 1-substituted-2,3-dibenzoyloxy-3-methylindolines $(2g,h)^{14}$ which were obtained from the reaction of 1-benzoyl-3-methylindole, and 3-methyl-1-tosylindole with benzoic acid. In case of (2h), for example, 2-benzoyloxy-3-methyl-1-tosylindole(4)(14%, mp 133-135°C)¹⁵⁾ was isolated as a by-product.

The formation of (2) may be rationalized by the assumption that the initially formed cationic indolenine intermediate (5) may be attacked by acyloxy anions to give the diacyloxy products

	Rl	R^2	R ³	Solvent	Yield(%)	Mp(°C) ^{C)}	NMR(δ , CDCl ₃)
a	benzoyl	Н	phenyl	CH ₂ Cl ₂ h)	53	142-143	6.84(s,2-H),6.20(s,3-H)
b	benzoyl	н	Me	CH ₂ Cl ₂ CH ₃ COOH b)	43	94-95	6.48(s,2-H),5.83(s,3-H)
				5			2.05(s,COMe),1.95(s,COMe)
С	benzoyl	Н	benzyl	CHCl	40	oil	6.41(s,2-H),5.82(s,3-H)
				5 b)			$3.57(s, COCH_2), 3.46(s, COCH_2)$
d	tosyl	Н	Me	сн _а соон b)	46	143-144	6.56(s,2-H),5.68(s,3-H)
	_			3			2.02(s,COMe),1.82(s,COMe)
е	tosyl	Н	phenyl	CH2Cl2	40	171 - 172	7.00(s,2-H),6.10(s,3-H)
f	tosyl	Н	benzyl	CH ₂ Cl ₂	41	oil	6.66(s,2-H),5.74(s,3-H)
							$3.60(s, COCH_2), 3.34(s, COCH_2)$
g	benzoyl	Me	phenyl	CH2C12	48	157 - 158	1.90(s,3-Me)
h	tosyl	Me	phenyl	CH ₂ Cl ₂	45	134-135	1.90(s,3-Me)

Table 1. Physical data of 1-substituted-2,3-diacyloxyindolines^{a)}

a) Reaction time ; 24 h for (2a~d) and 48 h for (2e~h).

b) After the reaction, acetic acid was evaporated under reduced pressure. The residue was dissolved in benzene.

c) Recrystallized from MeOH-H $_2$ O or MeOH-THF-H $_2$ O, except for (2c) and (2f).

References and footnotes

R.J.Sundberg, "The Chemistry of Indoles," Academic Press, New York, 1970.
 T.Nishio, M.Yuyama, and Y.Omoto, Chem. and Ind., 1975, 480.

- 2) T.Nishio, M.Yuyama, and Y.Omoto, Chem. and Ind., <u>1975</u>, 480.
 3) Y.Tamura, S.Kwon, F.Tabusa, and M.Ikeda, Tetrahedron Lett., <u>1975</u>, 3291.
 4) M.Ikeda, F.Tabusa, S.Kwon, and Y.Tamura, Tetrahedron Lett., <u>1976</u>, 2347.
 5) S.Kwon, T.Okada, M.Ikeda, and Y.Tamura, Heterocycles, <u>6</u>, 33 (1977).
 6) Y.Tamura, S.Kwon, M.Chun, and M.Ikeda, J.Heterocyclic Chem., <u>15</u>, 425 (1978).
 7) W.Adinolfi, M.Parrilli, G.Laonigro, and L.Mangoni, Tetrahedron Lett., <u>1976</u>, 3661.
 8) All new crystalline compounds gave satisfactory elemental and spectral analyses.
 9) (3) : IR(KBr) 1720 cm⁻¹; NMR (*S*, CDCl₃) 7.00-8.00; Mass m/e, 341(M⁺).
 10) 1-Benzoyl-3-iodoindole(7%, mp 114-115°C) was also isolated as an another hyperproduct
- by-product.
- 11) a) F.A.L.Anet and J.M.Muchowski, Chem.and Ind., <u>1963</u>, 81. b) Y.Tamura, M.Chun, S.Kwon, T.Okada, and M.Ikeda Chem. Pharm. Bull., <u>26</u>, 3515 (1978).
 12) R.Weissgerber, Chem.Ber., <u>46</u>,651 (1913).

- 13) Acetic acid was used as a solvent instead of CH₂Cl₂.
 14) The stereochemical relationship could not be assigned by NMR data.
 15) (4): IR(KBr) 1760 cm⁻¹; NMR (\$, CDCl₃) 2.06(s,3-Me); Mass m/e, 405(M⁺).

(Received December 5, 1979)