A Facile Preparation of 3-Alkylindoles via Wittig Reaction of 1-Acetylindol-3(2H)-ones with Stabilized Phosphonium Ylides

Tomomi Kawasaki, Yoshinori Nonaka, Maki Uemura, Masanori Sakamoto* Meiji College of Pharmacy, 1-35-23, Nozawa, Setagaya-ku, Tokyo 154, Japan

3-Alkylindoles can be conveniently prepared by the Wittig reaction of 1-acetyl-indol-3(2H)-ones with the stabilized phosphonium ylides.

Although the reaction of the 3-oxo function of 1-acetyl-indol-3(2H)-ones 1 with nucleophiles seems to be the useful method for the preparation of 3-substituted indoles, this reaction is limited due to the propensity of 1 to enolize in the presence of nucleophiles. For example, the Wadsworth-Emmons modification of the Wittig reaction of 1 with the anion of diethyl cyanomethane-phosphonate is used in the synthesis of indomethacin and tryptamines. However, the reaction of 1 with the anions of other phosphonates to afford 3-alkylindoles failed. This paper describes a facile preparation of 3-alkylindoles 4 by the Wittig reaction of 1-acetylindol-3(2H)-ones 14 with the stabilized ylides 2.

1-Acetylindol-3(2H)-one (1a) was treated with methoxy-carbonylmethylenetriphenylphosphorane (2a) in refluxing toluene for 4 hours to give methyl indole-3-acetate (4a) in 86% yield. The structure of 4a was confirmed by the spectral data and the alternative preparation of 4a from the 2-methoxy-2,3-dihydroindole derivative 6,5 which excluded the isomeric structure 3a.

In a similar manner, 3-alkylindoles 4b-g were obtained in good yields. In the case of 4g, however, its deacetylated product 5 was also obtained (Table). The reaction proceeds via the isomerization of the intermediate Wittig reaction product 3, and is sensitive to the reactivity of the ylide 2^6 and to the bulkiness of the substituents in 1 and 2.

In conclusion, the facile Wittig reaction described here provides a general method for the preparation of 3-alkylindoles in good yields.

All melting and boiling points are uncorrected. Melting points were measured on a Yanagimoto micromelting point apparatus. IR spectra were recorded on a Hitachi 270-30 spectrophotometer. ¹H-NMR spectra and mass spectra were recorded on JEOL JNM-PMX 60 and JMS-DX 302 spectrometers, respectively.

3-Alkylindoles 4a-g and 5; General Procedure:

A solution of indol-3(2H)-ones 1a-c (1 mmol) and ylides 2a-e (3 mmol) in toluene (3 mL) is refluxed for 4-80 h (Table). The mixture is evaporated under reduced pressure to give an oily residue. The residue is chromatographed on silica gel using an appropriate solvent [4a, EtOAc/hexane (1:1); 4b and 4d, CH₂Cl₂/hexane (3:1); 4c, EtOAc/hexane (4:5); 4f, CH₂Cl₂/hexane (3:2); 4g, CH₂Cl₂/hexane (2:1)] as an eluent to give 4a-g and 5.

Table. 3-Alkylindoles 4a-g and 5 Prepared

Prod- uct	Reaction Time (h)	Yield ^a (%)	mp (°C) (solvent) or bp (°C)/Torr ^b	Molecular Formula or Lit. mp (oc) or bp (oc)/Torr	IR (CHCl ₃) v (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)	MS (70 eV) m/z (%)
4a	4	86	160-165/0.3	150/0.57	1740, 1707	2.58 (s, 3H), 3.68 (s, 5H), 7.05–7.7 (m, 4H), 8.33 (d, 1H, J = 8)	231 (M ⁺ , 25), 189 (28), 130 (100)
4b	2	89	122–124 (Et ₂ O)	C ₁₃ H ₁₂ BrNO ₃ (310.1)	1742, 1717	2.60 (s, 3 H), 3.68 (s, 2 H), 3.75 (s, 3 H), 7.1–7.85 (m, 2 H), 8.32 (d, 1 H, J = 8)	311 (42), 309 (M ⁺ , 45), 269 (57), 267 (57), 210 (96), 208 (100), 129 (18)
4c	5	81	114-116.5 (AcOH/hexane)	118 ²	2260, 1716	2.63 (s, 3H), 3.78 (s, 2H), 7.15–7.75 (m, 4H), 8.3–8.65 (m, 1 H)	198 (M ⁺ , 56), 156 (100), 130 (34)
4d	18	59	150–155/0.2	120	1709	2.10 (s, 3 H), 2.32 (s, 3 H), 3.67 (s, 2 H), 7.2–7.85 (m, 4 H), 8.15–8.5 (m, 1 H)	215 (M ⁺ , 29), 172 (16), 130 (100)
4 e	39	65	158–160 (EtOAc)	C ₁₈ H ₁₅ NO ₂ (277.3)	1723, 1684	2.58 (s, 3 H), 4.37 (s, 2 H), 7.15–7.75 (m, 7 H), 7.8–8.2 (m, 2 H), 8.25–8.6 (m, 1 H)	277 (M ⁺ , 54), 172 (19), 130 (100)
4f	16	54	134–139/0.2	C ₁₅ H ₁₇ NO ₃ (259.3)	1731, 1713	1.23 (t, 3 H, $J = 7$), 1.61 (d, 3 H, $J = 7$), 2.62 (s, 3 H), 3.93 (q, 1 H, $J = 7$), 4.18 (q, 2 H, $J = 7$), 7.2-7.9 (m, 4 H), 8.3-8.7 (m, 1 H)	259 (M ⁺ , 34), 217 (10), 186 (19), 144 (100)
4g	80	45	205-210/0.2	C ₂₀ H ₁₉ NO ₃ (321.4)	1731, 1713	3.23 (t, 3 H, J = 7), 3.62 (s, 3 H), 3.75 (s, 2 H), 4.52 (s, 2 H), 6.8-	321 (M ⁺ , 50), 279 (63), 220 (100), 206 (19)
5		41	99-102 (Et ₂ O/hexane)	C ₁₈ H ₁₇ NO ₂ (279.3)	3488, 1736	8.0 (m, 9H) 3.62 (s, 3H), 3.75 (s, 2H), 4.10 (s, 2H), 7.0–7.95 (m, 10H)	279 (M ⁺ , 36), 220 (100), 206 (19)

^a Yield of isolated pure product.

b Bath temperature of a Buchi GKP-50 distillation apparatus. Products 4b and 4e gave satisfactory microanalyses: C ±0.08, H ±0.23, N ±0.03. Products 4f, 4g, and 5 gave satisfactory HRMS (±0.0003 amu).

$$R^{1}$$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{4

$$\begin{bmatrix} R^3 & R^4 \\ R^1 & R^2 \\ Ac \end{bmatrix}$$

$$Ac$$

$$Ac$$

$$Ac$$

$$4 a-g$$

1	R ¹	R ²	2	R ³	R ⁴	2	R ³	R ⁴
b	Br		b	Н	CO₂Me CN COMe			

4	R ¹	R ²	R ³	R ⁴	4	R ¹	R ²	R³	R ⁴
b c	Br H	H H	H H	CO ₂ Me CO ₂ Me CN COMe	f	Η	H H CH ₂ Ph	Me	CO ₂ Me

1-Acetyl-3-methoxycarbonylmethylindole (4a) from (Z)-1-Acetyl-2-methoxy-3-methoxycarbonylmethylene-2,3-dihydroindole (6):

A mixture of 6^5 (1 g, 3.8 mmol) and 10% Pd-C (0.1 g) in MeOH (25 mL) is vigorously stirred under H_2 atmosphere at r.t. for 4 h. The catalyst is removed by filtration and the filtrate is concentrated under reduced pressure to give a colorless oil (0.94 g). To the solution of the oily product in CH_2Cl_2 (50 mL), $SnCl_4$ (1.04 g, 4 mmol) is gradually added under ice cooling. After 1.5 h, the mixture is extracted with CH_2Cl_2 (500 mL) and the extract is washed with H_2O , dried (MgSO₄), and evaporated under reduced pressure to give an oily residue. The residue is chromatographed on silica gel (CH_2Cl_2) to give 4a yield: 0.78 g (88%); bp 170–175°C/1 Torr (bath temp.) (Lit. 7 bp 150/0.5 Torr).

Received: 11 December 1989, revised: 16 February 1990

- (1) Mérour, J. Y.; Coadou, J. Y.; Tatibouët, F. Synthesis 1982, 1053.
- (2) Buzas, A., Herisson, C. Synthesis 1977, 129.
- (3) Buzas, A., Merour, J.Y. Synthesis 1989, 458.
- (4) Chien, C.-S., Hasegawa, A.; Kawasaki, T.; Sakamoto, M. Chem. Pharm. Bull. 1986, 34, 1493.
- (5) Kawasaki, T.; Nonaka, Y.; Ohtsuka, H.; Sato, H.; Sakamoto, M. J. Chem. Soc., Perkin Trans. 1 1990, 1101.
- (6) Gosney, I.; Rowley, A.G., in: Organophosphorus Reagents in Organic Synthesis, Cadogan, J.I.G. (ed.), Academic Press, London, 1979, p. 17.
- (7) Reeve, W.; Hudson, R.S.; Woods, C.W. Tetrahedron 1963, 19, 1243
- (8) Brown, J.B.; Henbest, H.B.; Jones, E.R.H. J. Chem. Soc. 1953, 3172.