CH oscillator of $C_6H_5CHBr_2$) are significantly higher than usual.¹ These greater uncertainties are undoubtedly due to the uncertainty in the peak positions of these low-intensity peaks, particularly at $\Delta v_{\rm CH} = 5$ (both molecules). Therefore, the ω and ωx values for the alkyl CH oscillator of the orthogonal conformer of $C_6H_5CHCl_2$ and the alkyl CH oscillator of $C_6H_5CHBr_2$ should be regarded only as estimates. We also note that the values of ω and ωx associated with the two aryl peaks are averages in the sense that these peaks correspond to unresolved contributions from nonequivalent aryl CH bonds.

The transition frequencies (see Tables I and II) of the aryl CH oscillators of C₆H₅CHCl₂ and C₆H₅CHBr₂ are higher than the corresponding transition frequencies for the CH oscillator of benzene (ΔE (benzene) = 8760, 11442, 14015, and 16467 cm⁻¹ for $\Delta v_{CH} = 3, 4, 5, \text{ and } 6$, respectively⁴²). Both the -CHCl₂ and

(42) Patel, C. K. N.; Tam, A. C.; Kerl, R. J. J. Chem. Phys. 1979, 71, 1470.

-CHBr₂ groups are electron-attracting relative to hydrogen. Thus, they strengthen the aryl CH bonds of $C_6H_5CHCl_2$ and C_6H_5C -HBr₂ and increase their vibrational frequencies relative to benzene.

It would be particularly useful to observe the CH-stretching overtone spectrum of $C_6H_5CHCl_2$ in the gas phase. There is the possibility that peaks due to the nonequivalent aryl CH bonds would be resolved. Of even greater interest would be an indication of the role played by liquid-phase intermolecular interactions in stabilizing the orthogonal conformer. We are currently attempting to build a high-temperature facility for an intracavity dye laser photoacoustic spectrometer to investigate these possibilities.

Acknowledgment. We are grateful to Professor Ted Schaefer and Mr. Glenn Penner for helpful discussions. We are also grateful to the University of Manitoba for the generous provision of computer time, and to the Natural Sciences and Engineering Research Council of Canada for financial support.

Registry No. C₆H₅CHCl₂, 98-87-3; C₆H₅CHBr₂, 618-31-5.

Single Pulse Laser Induced Reactions of Hexafluorobenzene/Silane Mixtures at 1027 and 944 cm^{-1 1,2}

Yoshinori Koga,^{3a} Robert M. Serino,^{3b} Ruth Chen,^{3c} and Philip M. Keehn*

Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254 (Received: December 16, 1985; In Final Form: August 18, 1986)

 C_6F_6/SiH_4 mixtures were irradiated with a single pulse of a megawatt CO_2 infrared laser at 1027 and 944 cm⁻¹, using fluences which ranged from 0.26 to 2.0 J/cm². Neat C_6F_6 (7.5 Torr, 1027 cm⁻¹) underwent decomposition to C_2F_4 at a fluence of 0.7 J/cm² with a conversion per flash (CPF) of 4.5%. At 0.3 J/cm² no reaction was observed, setting a fluence threshold for the laser-induced decomposition of C_6F_6 between 0.3 and 0.7 J/cm². In the presence of SiH₄ explosive reactions occurred with conversion of C_6F_6 as high as 70%! Different decomposition products were observed depending upon the amount of SiH₄ present. At constant C₆F₆ pressure (7.3 Torr) and at high C₆F₆ mole fraction ($R = P_{C_6F_6}/(P_{C_6F_6} + P_{SiH_4}) \ge 0.55$), fluorinated carbonaceous products were observed (C₂F₄, C₂F₆). At low C₆F₆ mole fraction ($R \le 0.55$), non-fluorinated carbonaceous products were observed (C_2H_2 , C_4H_2). SiF₄ was the major gaseous product in both regions, while SiF₃H was observed when R values were lower than 0.55. A polymeric black material was also deposited in the cell in both R zones. The highest CPF of C_6F_6 was obtained when the mole fraction of C_6F_6 was 0.55 and under these conditions only SiF₄, SiF₃H, and polymeric material were observed. Irradiation of C_6F_6/SiH_4 mixtures (constant C_6F_6 pressure, 7.5 Torr) at 944 cm⁻¹ using fluences below 1 J/cm² did not induce reaction. At 1.6 J/cm² no reaction was observed at C₆F₆ mole fractions above 0.3. However, between 0.3 and 0.1 mole fraction values identical products as those obtained in this zone under 1027-cm⁻¹ irradiation were observed. Identical products were also obtained when the C_6F_6 mole fraction was varied by adding C_6F_6 to SiH₄ (constant SiH₄ pressure, 30 Torr). However, the threshold for reaction was observed at a C_6F_6 mole fraction of R = 0.5 and no reaction was observed when R > 0.5. At higher overall pressure ($P_{C_6F_6} = 72$ Torr; $P_{SiH_4} = 37$ Torr, with R = 0.66) irradiation at 944 cm⁻¹ gave the same products as those observed in the high R zone of the 1027-cm⁻¹ irradiation. A higher fluence (2.05/cm²) was necessary, however, to induce the reaction at 944 cm⁻¹. These results are discussed in terms of (a) the low fluence threshold observed for the laser-induced decomposition of C_6F_6 , (b) the effects that added gases have on the decomposition of C_6F_6 , (c) the use of C_6F_6 as a sensitizer for laser-induced reactions, and (d) the potential for using SiH₄ for the laser-induced reduction of C-F bonds (C-F + Si-H \rightarrow C-H + Si-F).

Introduction

Infrared-laser-induced bimolecular reactions have been given limited attention compared with their unimolecular counterparts. In 1981, Danen and Jang⁴ suggested that products of bimolecular reactions might be generated by the simultaneous laser irradiation of both reactants. When infrared absorption bands of both

reactants coincide with one of the emission bands of the laser, the reaction may be influenced by a single laser irradiating wavelength. Bauer and Haberman⁵ reported on an explosive reaction between silane (SiH_4) and sulfur hexafluoride (SF_6) initiated by CW CO₂ laser irradiation at 944 cm⁻¹, in which both molecular species absorbed energy. Similarly, Haggerty and Cannon⁶ succeeded in synthesizing Si_3N_4 by irradiating mixtures of SiH_4 and NH_3 at 944 cm⁻¹ using focused and unfocused CW CO₂ techniques.

When the absorption bands of the reactant molecules are not coincident, the reaction might be induced by the simultaneous irradiation at two wavelengths by using two lasers. Alternatively,

⁽¹⁾ For previous paper in this series see: Madison, S. A.; Keehn, P. M. J. Anal. Appl. Pyrol. 1986, 9, 237-246.

⁽²⁾ This work was presented at the 187th National Meeting of the American Chemical Society, April 1984. Abstract ORGN 43.
(3) (a) Permanent address: National Chemical Laboratory for Industry, Tsukuba, Japan. (b) Present address: USA Foreign Science and Technology Center, Charlottesville, VA 22901. (c) Present address: National Bureau of Standards, Gaithersburg, MD 20899.

⁽⁴⁾ Danen, W. C.; Jang, J. C. In Laser Induced Chemical Processes; Steinfeld, J., Ed.; Plenum: New York, 1981; p 78.

⁽⁵⁾ Bauer, S. H.; Haberman, J. A., IEEE J. Quantum Electron. 1978 QE-14, 233.

⁽⁶⁾ Haggerty, J. S.; Cannon, W. R. In Laser Induced Chemical Processes; Steinfeld, J., Ed.; Plenum: New York, 1981; p 170.

IR-Laser-Induced Reactions of C₆F₆/SiH₄ Mixtures

one might take advantage of the different absorbing wavelengths of the reactants and specifically irradiate one or the other reactant. Under these circumstances different reaction channels might be expected to be dominant when the different species are irradiated.

Hexafluorobenzene (C_6F_6) and SiH₄ possess molecular vibrational modes, at 1027 cm⁻¹ and 944 cm⁻¹, respectively, which fall in the emission range of the CO₂ laser (900–1100 cm⁻¹). C_6F_6 has been considered to be relatively stable under laser irradiation and has been used as a sensitizer in laser-induced reactions.⁷ Duignan, Grunwald, and Speiser⁸ recently studied the decomposition of C_6F_6 by time-resolved spectroscopy at fluences that ranged from 100 to 900 J/cm². They demonstrated the intermediacy of C₂ and C₃ fragments, with C₂F₄ and (C₂F)_n being formed as the major products. Minor amounts of C₇F₈, C₃F₆, and C₄F₈, and trace amounts of CF₄ and C₂F₆ were also observed.

The infrared-laser-induced decomposition of SiH₄ has also been reported. Deutch⁹ studied the decomposition of SiH₄ at a fluence of 140 J/cm² and at high conversions observed hydrogen and silylene polymer (SiH_x)_n as the major products. Longeway and Lampe¹⁰ studied the decomposition of SiH₄ at low fluence (1 J/cm²) and low conversion levels (<1.5%) and observed Si₂H₆ and Si₃H₈ as major products along with hydrogen and minor amounts of Si₄H₁₀ and Si₅H₁₂. At SiH₄ pressures of greater than 14 Torr (SiH_x)_n was the major product. When irradiated in the presence of HCl, chlorosilanes were observed along with H₂ and polysilanes.¹¹

We have been studying the utility of SiH_4 in laser-induced bimolecular reactions. Our interest stems from the potential use of SiH₄ not only as an energizer but also as a reactant and a reducing reagent since it is a convenient source of hydrogen. We have found that carbon halogen bonds can be reduced by SiH₄ when the latter is irradiated in the presence of simple halohydrocarbons.¹² Thus, as depicted in Scheme I a variety of halohydrocarbons afford the corresponding hydrocarbons after 10 pulses at low irradiation fluences with relatively high conversion of RX and SiH₄. Since these reactions suggested the potential for selective deuteriation using SiD₄ and since SiD₄ does not have a strong absorption band in the 9-11- μ m emission region of the CO_2 laser, it was important to determine if the above reaction could be induced by irradiation of the halohydrocarbon. C_6F_6 was considered a good choice for the study because of its very strong C-F stretching mode at 1027 cm⁻¹ and because it seemed to be essentially inert at low fluence levels.^{7,8}

In this paper we report the results of a study of the single pulse laser induced reactions of C_6F_6/SiH_4 mixtures where the system is energized by selective excitation of either C_6F_6 or SiH₄. Single-pulse conditions were used so that the chemistry would not be complicated by the presence of product molecules. In the paper we describe the effects of the presence of a second gas on the decomposition of C_6F_6 , and the effect of mole ratio, fluence, and wavelength of irradiation on the bimolecular and unimolecular reactions of these two molecules and suggest possibilities for mechanistic considerations.

Experimental Section

The experiments were performed using a tunable pulsed CO_2 laser (Lumonics Research, Ltd. Model K-203). Irradiation using

Figure 1. Optical configuration for laser-induced reactions: (1) laser beam; (2) beam splitter; (3) Cu mirror; (4) reaction cell; (5) lens (optional); (6) CaF₂ beam attenuator; (7) pyroelectric detector; (8) oscilloscope; (9) He-Ne alignment laser; (10) spectrum analyzer; (11) disk calorimeter; (12) laser power meter.

the P(40) line $(1027.38 \text{ cm}^{-1})$ was carried out with an unfocused beam with fluences in the range of $0.26-0.7 \text{ J/cm}^2$. Irradiation using the P(20) line (944.18 cm^{-1}) was carried out with a beam condenser in order to obtain higher fluences of $1.6-2.0 \text{ J/cm}^2$. The incident beam energy was measured, after transmittance through a germanium beam splitter, with a Scientech disk calorimeter (Model 362). The laser beam entering the infrared cell was adjusted to 20 mm by using a variable aperture opening.

The optical bench used for the experiments is described in Figure 1. The laser beam, after passing through the 20-mm aperture, was reflected from the beam splitter (2) through the reaction cell (4). The amount of energy passing through the cell was measured after attenuation by a CaF₂ window (6) (transmittance, 37% at 1027 cm⁻¹), using the pyroelectric detector (Lumonics Model 20D; 7). The average energy absorbed per mole in the irradiation volume (E_{abs}) was then obtained from the difference between the incident energy and the amount passing through the empty and filled cells. The experimental error in the measurement of E_{abs} was about 15%.

The cell, fabricated from stainless steel, was cylindrical in shape and had polished KCl windows at either end. The volume of the cell was 22.7 cm³ and the optical path length was 2.54 cm. A port with a stopcock was centrally located on the body of the cylinder and was used for filling and evacuating the cell.

Hexafluorobenzene was purchased from the Aldrich Chemical Co. (99%) and was degassed and purified by bulb to bulb distillation. SiH_4 was obtained from the Matheson Gas Co. and was used without further purification.

An aluminum vacuum line was used in all gas manipulations since hexafluorobenzene attacks the grease of conventional glass systems. The pressures of the component gases were measured with an MKS Baratron manometer (Model 222B). C_6F_6 and SiH_4 gases were mixed in the infrared cell by thermal diffusion at room temperature. The concentration of the mixtures were defined by mole fraction (*R*) of C_6F_6 which was obtained from the ratio of the partial pressure of C_6F_6 to the total pressure of the mixture

$$R = \frac{P_{C_6F_6}}{P_{C_6F_6} + P_{SiH_4}}$$

The partial pressure of each of the gases in the mixture was verified by infrared spectroscopy before every experiment. Infrared spectra before and after a single pulse of laser irradiation were recorded with a Perkin-Elmer Model 683 infrared spectrophotometer. GC-MS spectrometric analysis was carried out after each reaction using a Hewlett Packard Model 5992 instrument. A Porapak N column was used with a flow rate of 16 mL/min and a temperature programming rate of 10 °C/min.

A single pulse of light at a specific wavelength was used to standardize all experiments and remove complications that would arise from chemistry that might take place when product molecules

⁽⁷⁾ Selamoglu, N.; Steel, C. J. Phys. Chem. 1983, 87, 1133.

⁽⁸⁾ Duignan, M. T.; Grunwald, E.; Speiser, S. J. Phys. Chem. 1983, 87, 4387.

 ⁽⁹⁾ Deutch, T. F. J. Chem. Phys. 1979, 70, 1187.
 (10) Longeway, P. A.; Lampe, F. W. J. Am. Chem. Soc. 1981, 103, 6813.

 ⁽¹⁰⁾ Longeway, F. A.; Lampe, F. W. J. Am. Chem. Soc. 1961, 103, 6813.
 (11) Moore, C. B.; Biedrzycki, J.; Lampe, F. W. J. Am. Chem. Soc. 1984, 106, 7761–7765.

Figure 2. Infrared spectra before (---) and after (---) the irradiation of C_6F_6/SiH_4 mixtures at 1027 cm⁻¹ (fluence 0.7 J/cm²; C_6F_6 pressure constant, 7.3 Torr): (a) R = 1.0, (b) R = 0.7, (c) R = 0.3.

would be present after the first pulse.

Results

Irradiation at 1027 cm⁻¹: The C-F stretching mode of C_6F_6 at 1027 cm⁻¹ is coincident with the P(40) line of the CO₂ laser, and in this series of experiments irradiation was carried out using this wavelength. Figure 2 shows the infrared specträ in the region between 1600 and 700 cm⁻¹, before and after irradiation of different C_6F_6/SiH_4 mixtures. The pressure of C_6F_6 was held constant at 7.3 ± 0.2 Torr and the amount of SiH₄ was varied in order to obtain the different mole fraction (*R*) values. The fluence was constant at 0.7 J/cm².

The $E_{\rm abs}$ for C₆F₆, though containing a large experimental error, was relatively constant above R = 0.5, and averaged 218 kJ/mol. This represented the absorption of about 18 photons/molecule/pulse. The $E_{\rm abs}$ was observed to increase with increasing SiH₄ pressure (decreasing R value) with the number of photons absorbed increasing to greater than 21/molecule/pulse (see Table I).

Figure 2a shows the results after one pulse were R = 1 (neat C₆F₆). The bands at 1340 and 1186 cm⁻¹, indicative of C₂F₄, are easily observed. The reduction in optical density of the 1027-cm⁻¹ band of C₆F₆ shows a conversion per flash (CPF) of 4.5%. Thus, even at low fluence levels¹³ a substantial amount of decomposition

TABLE I: Fluence (f) of and Energy Absorbed (E_{abe}) by the C_6F_6/SiH_4 System at Various Mole Fractions (R) of C_6F_6 for Irradiation at 1027 cm^{-1a}

 R	<i>f</i> , J/cm ²	E _{abs} , kJ/mol	R	f, J/cm ²	E _{abs} , kJ/mol
1.0	0.66	212	0.50	0.67	220
0.90	0.66	214	0.21	0.68	247
0.75	0.70	221	0.16	0.68	255
0.65	0.69	219	0.11	0.66	273
0.55	0.70	220			

^a The	pressure of	C_6F_6 was	s maintained	at 7.3 Torr	and the pressure
of SiH ₄	was varied	from 0 t	o 61.5 Torr.	(Data rela	ated to Figure 3).

Figure 3. Variation of the absorbance (α) of the major products with the mole fraction of C₆F₆ (*R*) in the irradiation of C₆F₆/SiH₄ mixtures at 1027 cm⁻¹ (fluence 0.7 J/cm²; C₆F₆ pressure constant, 7.3 Torr).

of C_6F_6 takes place after a single pulse.

Figure 2b shows the results after one pulse where R = 0.7. In this instance, C_2F_4 was observed after an explosive reaction in substantially larger quantities than in the previous experiment. The CPF of C_6F_6 was greater than 60%! Thus, the decomposition of C_6F_6 , giving C_2F_4 , is increased dramatically when irradiated in the presence of a reactant gas like SiH₄. Along with C_2F_4 and SiF₄, CF₄ and C_2F_6 were formed and a smaller amount of C_6F_5H . The inside of the cell was also coated with a grayish black material which is most likely mixtures of carbon, polymeric silanes, and fluorosilanes. (K₂SiF₆ was observed spectrally as well and must be derived from a reaction involving the KCl windows, SiF₄, and HF, see eq 2.)

Figure 2c shows the results after one pulse where R = 0.3. In this case no C_2F_4 was observed at all though the reaction was explosive and the CPF of C_6F_6 was greater than 50%. SiF₄ was the major product along with C_2H_2 , C_4H_2 , SiHF₃, and a lesser quantity of C_6F_5H . A light-brown material covered the inside of the cell and K₂SiF₆ was observed spectrally but in a smaller amount than in the previous experiment (R = 0.7).

Figure 3 shows a distribution map of the major products observed in the reactions involving the irradiation of C_6F_6/SiH_4 mixtures at 1027 cm⁻¹ with a fluence of 0.7 J/cm². The infrared absorbances of the reaction products are plotted as a function of the mole fraction (*R*) of C_6F_6 . A number of significant observations can be made by inspection of this plot. First, SiF₄ is produced over almost the entire range of *R* values (0.15 < *R* <

⁽¹³⁾ Previous work on the laser-induced decomposition of C_6F_6 was carried out using fluences of 100-900 J/cm². See ref 8.

⁽¹⁴⁾ K_2SiF_6 was formed in a laser-induced reaction involving SiH_4 and NF_3 (see *Chem. Abstr. 93*, 228474P). In addition whenever we observed K_2SiF_6 we always observed HCl by IR analysis. Finally, we have observed the H-F vibrational/rotational lines between 3900 and 3800 cm⁻¹ in the infrared spectrum when C_6F_6 and H_2 were irradiated. See following paper in this issue.

Figure 4. Variation of conversion per flash (CPF) of C_6F_6 as a function of mole fraction (*R*) of C_6F_6 in the irradiation of C_6F_6/SiH_4 mixtures at 1027 cm⁻¹ (C_6F_6 pressure constant, 7.3 Torr).

0.9). The production of SiF₄ is at a maximum when the mole fraction of the reagents are approximately equal ($R \approx 0.55$) and two clearly defined regions of carbonaceous product materials are delineated at this point. For the most part, above R = 0.55, only fluorinated hydrocarbons are formed while below that point only non-fluorinated hydrocarbons are produced. At R = 0.55, only carbon, polymer, SiHF₃, and SiF₄ seem to be formed. Second, below an approximate R value of 0.15 no reaction takes place at all. Third, the growth and decay of the fluorinated and non-fluorinated hydrocarbons do not overlap one another, indicating distinct pathways for their respective formations.

Figure 4 shows the variation of the CPF of C_6F_6 as a function of mole fraction of $C_6F_6(R)$ in C_6F_6/SiH_4 mixtures at high (0.7 J/cm^2) and low (0.3 J/cm^2) fluences. The plot shows that the maximum CPF for C_6F_6 is 70% after one flash and is observed at R = 0.55 and a fluence of 0.7 J/cm². Even when the fluence is lowered to 0.3 J/cm² greater than 50% CPF can be obtained at this R value. The plot also shows that the threshold for neat C_6F_6 decomposition is below 0.7 J/cm² but above 0.3 J/cm² and that the addition of even small amounts of SiH_4 increases the conversion. The CPF is in fact substantial when the mole fractions of the components are approximately equivalent and under those circumstances even a drastic reduction in fluence below the normal threshold level for neat C_6F_6 causes substantial C_6F_6 conversion. The products observed in the experiment using a fluence level of 0.3 J/cm^2 were the same and gave rise to a similar distribution map as that described in Figure 3 for a fluence of 0.7 J/cm² except the amounts were proportionally lower.

At a fluence level of 0.2 J/cm^2 no reaction took place at all for C₆F₆/SiH₄ mixtures. Thus, the fluence threshold for the mixture where maximum reaction normally takes place (R = 0.5) lies between 0.2 and 0.3 J/cm² (see Figure 4).

Irradiation at 944 cm⁻¹. The degenerate Si-H vibrational mode of SiH₄ is coincident with the P(20) emission line of the CO₂ laser. When silane was excited at 944 cm⁻¹ in a gas mixture of C₆F₆ and SiH₄, reaction did not occur at fluences lower than 0.9 J/cm². However, when the fluence was increased to 1.6 J/cm² by using a beam condenser (where the size of the laser beam entering and leaving the cell was kept at 20 mm in diameter by changing the distance between two lenses of the beam condenser), the reaction occurred explosively.

Figure 5 shows the infrared spectra of different C_6F_6/SiH_4 mixtures in the region between 1600 and 700 cm⁻¹ before and after a single pulse of radiation. The pressure of C_6F_6 was held constant at 7.5 Torr and the amount of SiH₄ was varied in order to obtain the different mole fraction values (*R*). The fluence was also constant at 1.6 J/cm².

The average $E_{\rm abs}$ was 80 kJ/mol in the 0.075 < R < 0.24 region but was observed to increase as R decreased (see Table II). This represented the absorption of 6-8 photons/molecule/pulse.

As reflected in Figure 5a, the reaction did not occur when the mole fraction (R) was 0.3 or greater. This phenomenon will be

Figure 5. Infrared spectra before (—) and after (---) the irradiation of C_6F_6/SiH_4 mixtures at 944 cm⁻¹ (fluence 1.6 J/cm²; C_6F_6 pressure constant, 7.5 Torr): (a) R = 0.3, (b) R = 0.15, (c) R = 0.075.

TABLE II: Fluence (f) of and Energy Absorbed (E_{abs}) by the C_6F_6/SiH_4 System at Various Mole Fractions (R) of C_6F_6 for Irradiation at 944 cm^{-1 a}

R	f, J/cm ²	E _{abs} , kJ∕mol	R	f, J/cm ²	$E_{abs}, kJ/mol$	
0.24	1.65	68	0.10	1.63	88	
0.21	1.64	74	0.075	1.56	80	
0.15	1.64	85				

^a The pressure of C_6F_6 was maintained at 7.5 Torr and the pressure of SiH₄ was varied from 24 to 92 Torr. (Data related to Figure 6).

explained later and seems to be due to the low partial pressure of SiH₄ in the mixture. When the mole fraction was reduced however, reaction did take place. In Figure 5b where R = 0.15, a substantial reaction was observed (CPF of $C_6F_6 > 60\%$) with SiF₄, SiHF₃, C_2H_2 , and trace amounts of C_4H_2 being formed. (These are the same products which are formed in the 0.1 < R< 0.5 region of the reaction initiated by iradiation at 1027 cm⁻¹.) When R was lowered to 0.075 (Figure 5c) the conversion of C_6F_6 was reduced as well (CPF $\approx 43\%$), and no C_2H_2 or C_4H_2 was produced. SiF₄ and SiHF₃ were the only observable products.

Figure 6 shows the variation of the CPF of C_6F_6 (a) and the variation of the absorbance of the reaction products (b) as a

Figure 6. Variation of conversion per flash (CPF) of C_6F_6 (a) and absorbance (α) of the major products (b) with mole fraction (*R*) of C_6F_6 in the irradiation of C_6F_6/SiH_4 mixtures at 944 cm⁻¹ (fluence 1.6 J/cm²; C_6F_6 pressure constant, 7.5 Torr).

TABLE III: Fluence (f) of and Energy Absorbed (E_{abb}) by the C_6F_6/SiH_4 System at Various Mole Fractions (R) of C_6F_6 for Irradiation at 944 cm^{-1 a}

 R	f, J/cm ²	E _{abs} , kJ∕mol	R	f, J/cm ²	E _{abs} , kJ∕mol	
 0.59	1.59	138	0.30	1.62	63	
0.56	1.65	146	0.20	1.58	70	
0.52	1.65	141	0.11	1.57	76	
0.50	1.62	-82	0.0	1.58	76	
0.40	1.61	-0.4				

^a The pressure of SiH₄ was maintained at 30 Torr and the pressure of C_6F_6 was varied from 0 to 43 Torr. The negative values indicate a net energy emission from the system as evidenced by a bright flash of light. (Data related to Figure 7).

function of mole fraction of $C_6F_6(R)$ observed in the reactions involving the irradiation of C_6F_6/SiH_4 mixtures at 944 cm⁻¹ with a fluence of 1.6 J/cm². The maximum conversion of C_6F_6 was observed at R = 0.15 and under these conditions SiF₄, C_2H_2 , SiHF₃ were produced in the greatest amount.

A slightly different profile was obtained when the SiH₄ pressure was held constant (30 Torr) and the C₆F₆ pressure was varied. In these experiments a strong white/yellow emission was observed after the irradiation. Figure 7 shows the variation of the CPF of both C₆F₆ and SiH₄ (a) and the variation of absorbance of the major reaction products (b) with mole fraction of C₆F₆ (R) in the reactions involving the irradiation of C₆F₆/SiH₄ mixtures at 944 cm⁻¹ with a fluence of 1.6 J/cm².

The $E_{\rm abs}$ varied dramatically as the presence of C_6F_6 was increased (see Table III). In the range 0.0 < R < 0.2 the $E_{\rm abs}$ was relatively constant and averaged 74 kJ/mol. After that point there was a slow, than dramatic, decrease in $E_{\rm abs}$ until at R = 0.5 the

Figure 7. Variation of conversion per flash (CPF) of SiH₄ and C₆F₆ (a) and absorbance (α) of the major products (b) with mole fraction (R) of C₆F₆ in the irradiation of C₆F₆/SiH₄ mixtures at 944 cm⁻¹ (fluence 1.6 J/cm²; SiH₄ pressure constant, 30 Torr).

Figure 8. Infrared spectrum of the product mixture after irradiation of 72 Torr of $C_6F_6/37$ Torr of SiH₄ (R = 0.66) at 944 cm⁻¹ (fluence 2.0 J/cm²).

 E_{abs} was negative! At this R value an extremely bright white light was emitted from the cell and the E_{abs} reflected the emitted energy. At higher R values (0.52 < R < 0.59) the E_{abs} was relatively constant again and averaged 141 kJ/mol. This higher E_{abs} , relative to that at low R values, is assumed to be due to additional absorption by C_6F_6 at these high C_6F_6 pressures. Though the products for the constant SiH₄ pressure experiment were the same as those obtained in the reaction described in Figure 6 the threshold for reaction appears at R = 0.52 rather than R = 0.3. Using this fluence no chemistry takes place at all above an R value of 0.52. In addition, the maximum conversion for both C_6F_6 and SiH₄ is observed at higher R value (R = 0.5) and the maximum formation of SiF₄ and C₂H₂ is greater under these conditions albeit at a value of R(0.4) different than the previous runs (where the pressure of C_6F_6 was constant).

At fluences greater than 1.6 J/cm^2 reaction does take place in the *R* region greater than 0.52. This can be observed in Figure 8 which shows the infrared spectrum of the product mixture after

IR-Laser-Induced Reactions of C₆F₆/SiH₄ Mixtures

a single pulse of irradiation (944 cm^{-1}) at a fluence of 2 J/cm². In this case when the mole fraction was 0.66 (C_6F_6 pressure 72 Torr, SiH₄ pressure 37 Torr) a substantial reaction was observed. The products formed under these conditions are the same as those generated when C_6F_6 was irradiated (1027 cm⁻¹, Figure 2b) except that CHF₃ was also observed under these conditions and the relative amounts of the products differed.

Discussion

Duignan, Grunwald, and Speiser⁸ have identified the gas products from the multipulsed-laser-induced decomposition of C₆F₆ at high fluence (>100 J/cm²). They found the major product to be C_2F_4 . Smaller amounts of $C_6F_5CF_3$, C_3F_6 , and C_4F_8 and trace amounts of CF_4 and C_2F_6 were also present. Despite the absence of these minor products, our results indicate that neat C_6F_6 can be decomposed by using fluences as low as 0.7 J/cm² and that substantial decomposition takes place even in a single pulse. At this fluence a 4.5% CPF of C_6F_6 was observed (see Figure 4). The symmetric (1186 cm⁻¹) and antisymmetric (1340 cm⁻¹) stretching bands, indicative of C_2F_4 , were clearly visible in the infrared spectrum (see Figure 2a). The absence of the minor products is perhaps due to the insensitivity of the IR spectrophotometer to the small concentrations of these products which may have been generated, but is more likely due to the lower fluence or single-pulse nature of our experiments. If these latter variables are significant the implication is that products other than C_2F_4 are derived from secondary reactions and that the likelihood of observing them would increase with fluence and number of pulses as was observed by Duignan et al. The actual fluence threshold for neat C_6F_6 decomposition is probably slightly less than 0.7 J/cm^2 as indicated in the graph of Figure 4 but somewhat greater than 0.3 J/cm^2 .

Though the minor products (observed by Duignan et al.) were absent in our irradiation of neat C_6F_6 , most of them were observed when SiH₄ was present during irradiation. Thus, while C_2F_4 and SiF₄ were the major products observed in the single-pulse irradiation of C_6F_6/SiH_4 mixtures (R = 0.7), CF₄, C_2F_6 , and C_6F_5H were also observed by IR analysis (see Figure 2b), and C₃F₆ was detected by GC/MS analysis. The significance of this result is that, in the presence of 30 mol % of SiH_4 , the CPF of C_6F_6 was more than 10 times greater, and the peak intensity of C_2F_4 was 20 times greater than that observed in the decomposition of neat C_6F_6 . In fact, even when the mole fraction of SiH₄ was as low as 10%, the CPF of C_6F_6 was 3 times greater than that observed in the neat decomposition. Thus, the presence of SiH_4 during the irradiation of C_6F_6 has the effect of decreasing the threshold of the decomposition reaction of C_6F_6 and suggests that a similar decrease in the decomposition threshold might also occur in the presence of other added reagent gases. We have demonstrated that this is true for a wide variety of other molecular systems and we discuss the potential of the chemistry derived from the irradiation of some simple C_6F_6 mixtures in the following paper.

The above represents an important observation since C_6F_6 is used as a sensitizer in infrared-laser-induced chemistry and is generally considered to be inert in the presence of other molecular systems. Based on our results, C_6F_6 can participate as a reactant if the mole fraction and fluence levels are correct. Care should therefore be exercised in its use as a sensitizer.¹²

In order to define the energy threshold for the reaction involving C_6F_6/SiH_4 mixtures the fluence was varied. When a mixture of C_6F_6/SiH_4 (7 Torr/3 Torr; R = 0.7) was irradiated at 1027 cm⁻¹ at a fluence of 0.3 J/cm^2 , an explosive reaction occurred and C_2F_4 was observed (Figure 4). When an identical mixture was irradiated by using a fluence of 0.26 J/cm^2 no reaction occurred. Thus, the energy threshold for inducing reaction at R = 0.7appears to lie in the 0.3-0.26 J/cm² fluence region. Since CPF maxima are observed at R = 0.55 when either 0.7 and 0.3 J/cm² fluences are used (see Figure 4) it seems reasonable that reaction could also take place at even lower fluences when R = 0.5. That is, based on the data shown in Figure 4, the fluence threshold for reaction at R = 0.5 should be less than 0.3 J/cm².

It seems reasonable that among the numerous decomposition channels available to C_6F_6 those that involve direct degradation should not be affected by the presence of SiH₄. On the other hand, the ones which involve the formation of intermediates, especially radicals, should be effected by SiH₄. One such reaction involves the formation of $C_6F_5^{\bullet}$ and F^{\bullet} radicals ($C_6F_6 \rightarrow C_6F_5^{\bullet} + F^{\bullet}$, $\Delta H = 644 \text{ kJ/mol}$).^{8,16,19} If this is an important primary reaction, SiH_4 could easily cause increased decomposition by exploiting its strong affinity (silicon and/or hydrogen atoms) for fluorine radicals. Under a given set of energy input conditions, when SiH₄ is absent, there may be enough energy to dissociate the C-F bond in C_6F_6 but subsequent decomposition may be energetically disfavored with recombination taking place. However, in the presence of SiH_4 a cascade effect could be realized since quite a bit of energy would be released when HF and SiF₄ are formed.²⁰ Since the concentration of the F[•] radicals would be depleted rather rapidly the C_6F_5 radicals could react rapidly with SiH₄ to give C_6F_5H which may be the first product in a series of reactions which leads to full reduction and ring degradation.

In the irradiation of C_6F_6/SiH_4 mixtures the products and product ratios were found to be dependent on the mole fraction (R) of C_6F_6 . As can be seen in Figure 3, SiF₄ was produced throughout the entire mole fraction region (where R varies from 0.9 to 0.2). The yield of SiF₄ was however greatest when R =0.55. At this point the CPF of C_6F_6 was the highest observed and no (or below detectable limits of) fluorinated and nonfluorinated hydrocarbons were produced. During the irradiation the inside of the cell became black by an explosive reaction and the greatest amount of solid K₂SiF₆ was formed.²¹ It seems reasonable therefore that in the region where 0.9 > R > 0.2 an important reaction could be the one expressed in eq 1 with the largest conversion taking place at R = 0.55 (i.e., when the mole fractions of C_6F_6 and SiH_4 are about equal). Though HF is indicated in eq 1 it was not observed spectrally. However, this

$$C_6F_6 + SiH_4 \rightarrow SiF_4 + 6C + 2HF + H_2 \tag{1}$$

species almost certainly exchanges with chlorine of the window material (present as KCl) to give K₂SiF₆ (observed) as denoted in eq $2.^{14}$

$$SiF_4 + 2HF + 2KCl \rightarrow K_2SiF_6(s) + 2HCl + 2H_2 \quad (2)$$

In addition to the chemistry suggested in eq 1 and 2 other reactions also seem to be occurring when the mole fraction of C_6F_6 and SiH₄ are not equal ($R \neq 0.5$). When R > 0.5 only fluorinated hydrocarbons are produced (C_2F_4 , C_2F_6 , CF_4). Since the products in this region are almost the same as those obtained in the irradiation of neat C₆F₆ described by Grunwald,⁸ the chemistry in this zone seems to be represented mainly by C_6F_6 degradation either directly or via the C_6F_5 radical. Some decomposition channels, similar to those reported by Duignan et al.⁸ are likely taking place, albeit with increased conversion, due to the presence of SiH₄. The primary bond-breaking reactions may be those described in eq 3 and 4 as previously reported by Grunwald,⁸ but

$$C_6F_6 \xrightarrow{n\nu} CF = CF - CF = CF - CF = CF$$
 (3)

$$C_6F_6 \xrightarrow{n\nu} C_6F_5 + F^{\bullet}$$
 (4)

⁽¹⁵⁾ Selamoglu and Steel⁷ have successfully used C_6F_6 as a sensitizer without decomposition in the degradation of cyclobutanone. In their studies the fluence range used was below 0.35 J/cm^2 and mole fraction of C_6F_6 was 0.95. Based on the data in Figure 4, C_6F_6 should not decompose under these conditions. The fact that no C_6F_6 decomposition occurred suggests that a similar CPF/R curve is true for the C_6F_6/C_4H_6O system.

⁽¹⁶⁾ The C-F bond energy for C_6F_6 has been estimated to be as low as 477 kJ/mol¹⁷ and as high as 644 kJ/mol.^{18,19} (17) Okafo, E. N.; Whittle, E. Int. J. Chem. Kinet. **1978**, 10, 591.

⁽¹⁸⁾ Gilbert, R.; Theoret, A. J. Phys. Chem. 1976, 80, 1017.
(19) (a) Kroch, M. J.; Price, S. J. W.; Yared, W. F. Can. J. Chem. 1974, 52, 2673–2678. (b) Price, S. J. W.; Sapiano, H. J. Can. J. Chem. 1974, 52, 2673–2678. 4109-4111.

⁽²⁰⁾ $H^{\bullet} + F^{\bullet} \rightarrow HF$, $\Delta H = -564 \text{ kJ/mol}$; $F_3 \text{Si}^{\bullet} + F^{\bullet} \rightarrow \text{Si}F_4$, $\Delta H = -606$ kJ/mol.

⁽²¹⁾ In general a substantial explosion was observed in the R = 0.75-0.25region when the CPF of C_6F_6 was greater than 50%. When the CPF of C_6F_6 was lower than 50% the explosion was not substantial.

at least two other decomposition channels depicted by eq 5 and 6 may also be occurring in this region. Since we were able to

$$C_6F_6 \xrightarrow{n\nu} FC \equiv C - C \equiv CF + CF_2 = CF_2$$
 (5)

$$C_6F_6 \xrightarrow{n\nu} 3:CF_2 + 3C$$
 (6)

detect C_6F_5H when irradiating C_6F_6 in the presence of SiH₄ we believe that formation of $C_6F_5^{\bullet}$ (eq 4) represents an important primary reaction channel for C_6F_6 decomposition. (This seems general for a variety of other hydrogen-containing addends as well; see following article in this issue.) The formation of C_2F_4 , C_2F_6 , C_3F_6 , and CF_4 can be explained by the reactions of : CF_2 and F^{\bullet} with each other and with C_2F_4 as depicted in eq 7-10. C_6F_5H

$$:CF_2 + :CF_2 \rightarrow CF_2 = CF_2$$
(7)

$$CF_2 = CF_2 + :CF_2 \rightarrow CF_2 = CF - CF_3$$
 (8)

$$CF_2 = CF_2 + 2F^* \rightarrow CF_3 - CF_3 \tag{9}$$

$$: CF_2 + 2F^{\bullet} \to CF_4 \tag{10}$$

is most likely derived from the abstraction of hydrogen in SiH_4 by $C_6F_5^*$ (eq 11) with SiH_3^* and F^* radicals likely being the

$$C_6F_5 + SiH_4 \rightarrow C_6F_5H + SiH_3$$
(11)

precursors for SiHF₃ and HF.

In the region where 0.5 > R > 0.1 the main carbonaceous product is C_2H_2 with a smaller amount of C_4H_2 and C_6F_5H being observed as well. No C_2F_4 or any other fluorinated hydrocarbon was detected. Along with a substantial quantity of SiF₄, SiHF₃ was also found but no other fluorinated silanes (see Figures 2 and 3). In addition, when R < 0.2, a yellow-brown solid was observed in the cell which almost certainly is $(SiH_x)_n$, and/or $(SiF_x)_n$, $(SiH_xF_y)_n$.^{10,11}

Since no C_2F_4 or other simple fluorinated hydrocarbons are observed in this R zone, decomposition of C_6F_6 by reactions like those described in eq 5 and 6 do not seem to be taking place. Reduction of the simple fluorinated hydrocarbons by SiH₄, depicted in these equations, is, however, possible (e.g., C_4H_2 can be considered to be formed from C_4F_2 after its generation from C_6F_6 ; see eq 5). However, if this were general, one might expect to observe at least some C_2H_4 , C_2H_6 , C_3H_6 , CH_4 or similar simple partially or fully reduced hydrocarbons. This is not the case.

Acetylene is a major product and may be the result of the reduction of all the simple fluorinated hydrocarbons derived from C_6F_6 decomposition (eq 3-6). However, since SiF₃H is a major product as well in this zone, C_2H_2 and SiF₃H may be generated as depicted in eq 12, either directly or through some partially or

$$C_6F_6 + 2SiH_4 \rightarrow \rightarrow 2SiHF_3 + 3C_2H_2$$
(12)

fully reduced form of C_6F_6 . The presence of C_6F_5H argues for the possibility of a stepwise reduction to tetra, tri, di, mono, and unfluorinated benzenes with subsequent decomposition to C_2H_2 .²² The formation of C_4H_2 can be rationalized by dimerization of acetylene as shown in eq 13 and 14.²³

$$C_{2}H_{2} \rightarrow CH \equiv C^{*} + H^{*}$$
 (13)

$$2CH \equiv C^{\bullet} \rightarrow C_4 H_2 \tag{14}$$

In general, it seems that the major reactions in this region (R < 0.5) do not involve direct C₆F₆ decomposition (i.e., eq 5 and 6) though it seems that reactions described by eq 3, 4, and 11 may be taking place. Rather, this zone seems to be defined more by the decomposition of SiH₄ and reduction of radical fragments derived from C₆F₆. That is, SiH₄, when present in relatively large

amounts, easily reduces the C_6F_6 -derived radicals and is energized by the C_6F_6 absorber. This suggests sensitized decomposition of SiH₄ as described in eq 15–17. By referring to eq 15 and 16 the

$$C_6F_6 \xrightarrow{n\nu} C_6F_6^*$$
 (15)

$$C_6F_6^* + SiH_4 \to C_6F_6 + SiH_4^*$$
 (16)

$$\operatorname{SiH}_4^* \rightarrow :\operatorname{SiH}_2 + \operatorname{H}_2 \text{ or } ^{\circ}\operatorname{SiH}_3 + \operatorname{H}^{\circ}$$
(17)

absence of reaction products similar to those observed in the R > 0.5 region (C_2F_4 , C_2F_6 etc.) may be explained in the following manner. When R < 0.5, deactivation of $C_6F_6^*$ by SiH₄ plays an important role. Thus, as R is decreased, $C_6F_6^*$ is quenched by SiH₄ and the latter is activated by sensitization. Below an approximate R value of 0.15 deactivation of C_6F_6 is complete. Since the relative amount of SiH₄ increases as R decreases the average energy per SiH₄ molecule is reduced at constant energy absorption. Below R = 0.15 the fraction of SiH₄ molecules decomposing falls below our detection sensitivity.

When C_6F_6/SiH_4 mixtures were irradiated at 944 cm⁻¹, coincident with SiH₄ absorption, the products observed in the R >0.5 and R < 0.5 zones are similar to those found in the 1027-cm⁻¹ irradiation (see Figures 5-8 and compare with Figures 2-4). Thus, examining Figures 2-8 and especially comparing Figures 2c with 5b, 2b with 8, and 3 with 6 and 7 one notes that in the 0.1 < R< 0.5 zone SiF₄, SiHF₃, C_2H_2 , and C_4H_2 are all present while in the 1.0 > R > 0.5 zone SiF₄, C₂F₄, C₂F₆, and CF₄ are present. The fluence requirement needed to induce reaction at 944 cm⁻¹, however was greater. At this wavelength no reaction was observed in any region at fluences less than 0.9 J/cm². At 1.6 J/cm², when the C_6F_6 pressure is held constant at 7.5 Torr (see Figure 6), the point at which one observes maximum absorption for the products occurred at R = 0.15, an R value lower than that observed for the irradiation at 1027 cm⁻¹ (see Figure 3, $R \approx 0.25$). In addition, the threshold for reaction under these conditions (944 cm⁻¹, 1.6 J/cm^2 , C_6F_6 pressure constant) appears at a lower value of R (R < 0.3), since the CPF is zero at R = 0.3. From previous studies on silane decomposition¹⁰ it has been demonstrated that SiH₄ decomposes by molecular collisions after laser excitation. If the pressure of SiH₄ were decreased, the threshold energy of the decomposition would be expected to increase. At a fluence 1.6 J/cm^2 neat SiH₄ begins to decompose at a pressure higher than 20 Torr. In our experiments when the value of R is 0.3 (Figure 6) the pressure of SiH_4 is 17.4 Torr and this pressure is lower than that of the threshold pressure required for the decomposition. (No reaction occurs lower than $R \approx 0.075$ because the average energy per molecule is too low.)

When R is varied by adding C_6F_6 to a constant pressure of SiH₄ (30 Torr, Figure 7) the threshold for reaction increases and is observed at $R \simeq 0.52$. The point at which maximum absorption occurs for the two major products (SiF₄ and C_2H_2) also increases and is observed at $R \approx 0.4$. When $R \simeq 0.4-0.5$ a very strong emission was observed after the single laser pulse and the measured E_{abs} was negative (i.e., more energy released by the reactions than absorbed by the reactants). Under these conditions SiH₄ appears to be decomposing and reacting after initial excitation at 944 cm⁻¹ by the reactions suggested in eq 18, 17, and 19. As the C_6F_6

$$\operatorname{SiH}_4 \xrightarrow{n\nu} \operatorname{SiH}_4^*$$
 (18)

 $5SiH_3$ + $3C_6F_6 \rightarrow \rightarrow$

$$2SiF_4 + 3SiHF_3 + 3C_2H_2 + 3C_4H_2 + F^{\bullet}$$
 (19)

$$SiH_4^* + C_6F_6 \to C_6F_6^* + SiH_4$$
 (20)

pressure is increased the reaction becomes very exothermic due to the formation of an increased number of Si-F bonds (SiF₄). In addition, as the amount of C_6F_6 increases, deactivation of SiH₄* by C_6F_6 (eq 20) becomes increasingly important. This can be seen from Figure 7. At R = 0.52 (pressure of SiH₄ 30 Torr) despite the presence of greater than 20 Torr of SiH₄ the reaction is totally quenched by C_6F_6 (33 Torr). Thus, while chemistry derived from SiH₄* takes place preferentially up to about $R \approx 0.5$, quenching

⁽²²⁾ Isomeric tetra- and trifluorinated benzenes have been observed when C_6F_6 was irradiated in the presence of other reducing agents. See following article in this issue.

⁽²³⁾ From an enthalpic point of view acetylene radicals could be scavenged with SiH₄ by the following exothermic reaction: CH==C⁺ + SiH₄ \rightarrow CH== CH + 'SiH₃. But since CH==C⁺ is most likely formed in a secondary process the presumed lower internal energy of the radical may not be as efficient as the primarily formed C₆F₅⁺ and F⁺ radicals in abstracting hydrogen from SiH₄.

by C_6F_6 seems to be the exclusive reaction above this R value and suggests that at these reactant concentrations the rate of quenching is greater than the rate of SiH₄* decomposition. The reason that no C_6F_6 decomposition occurs above this point, despite the absorption of greater than 80 kJ/mol (fluence 1.6 J/cm²), is because at this total pressure (63 Torr) the average energy per $C_6F_6^*$ molecule is too low for decomposition.

In the SiH₄ irradiation experiments (944 cm⁻¹) the reaction products were the same in the 0.1 < R < 0.5 region as those found in the C₆F₆ irradiation (1027 cm⁻¹). When the pressures of SiH₄ and C₆F₆ were increased, and the fluence was increased the reactions in the 1.0 > R > 0.5 zone could be examined. However, since the maximum vapor pressure of C₆F₆ is about 72 Torr at ambient temperature a complete study could not be carried out and only a few experiments were done to determine the products. Thus, when SiH₄ (37 Torr) was irradiated at 944 cm⁻¹ in the presence of C₆F₆ (72 Torr; R = 0.66) at a fluence of 2.0 J/cm² a reaction occurred explosively in a single laser pulse. The IR spectrum of this reaction mixture is shown in Figure 8. As can be seen from the figure the conversion is rather large and SiF₄, C₂F₄, CF₄, and C₂F₆ are present in addition to CHF₃. Except for CHF₃, these products are the same as those found in the 1027-cm⁻¹ irradiation of C₆F₆/SiH₄ at R = 0.7.

Conclusions

The above study points out a few significant aspects related to the infrared-laser-induced chemistry of C_6F_6 and C_6F_6/SiH_4 mixtures. First, the fluence threshold for the laser-induced decomposition of neat C_6F_6 at 1027 cm⁻¹ is lower than originally thought and lies in the 0.3-0.7 J/cm² range for C_6F_6 pressures of about 7 Torr. Second, and most important, the presence of SiH_4 significantly enhances C_6F_6 decomposition. Using 50 mol % of SiH₄ in the mixture, the CPF of C_6F_6 after a single pulse $(\sim 70\%)$ is at least 15 times greater than for the decomposition of neat C₆F₆ (~4.5%). The presence of even 10 mol % of SiH₄ increases the CPF threefold over the neat decomposition. These results are especially important in light of the use that C_6F_6 gets as a sensitizer, since the presence of other reactants might also enhance the decomposition of C_6F_6 . Indeed, we have found that a large variety of organic molecules, including H₂, D₂, CH₄, C₂H₄, C₂H₆, C₅H₈, CHF₃, C₆H₁₂, C₂H₂, C₆H₆, NH₃, PH₃, H₂O, MeOH, MeOMe, H₂S, and CH₃Cl, cause similar increased decomposition of C_6F_6 when present during its irradiation. This is explored in more detail in the following publication for a series of hydride compounds.

Third, two sets of carbonaceous products are found during the C_6F_6/SiH_4 irradiation which are dependent upon the fractional pressure of the two gases and which are found in two distinct mole fraction zones straddling the R = 0.55 region. One set, which contains fluorine (C_2F_4 , C_2F_6), is found only in the 0.55 < R < 1 zone, while the other, which contains no fluorine (C_2H_2, C_4H_2) , is found only in the 0.1 < R < 0.55 zone. At R = 0.55 C₆F₆ decomposition takes place with the greatest efficiency and only SiF₃H, SiF₄, and Si and C polymers are formed. At low SiH₄ pressure enhanced C_6F_6 decomposition is observed selectively while at high SiH₄ pressure the decomposition is accompanied by reduction of the carbon-fluorine bonds (C-F \rightarrow C-H). At high C_6F_6 mole fractions, C_6F_6 decomposition leading to C_2F_4 seems to be dominant while at low C_6F_6 mole fraction C_6F_6 decomposition leading to C_2H_2 seems to be significant along with SiH₄ decomposition. As SiH₄ pressure is increased quenching of $C_6F_6^*$ by SiH₄ plays an increasingly important role and allows for SiH₄ chemistry to develop.

Though the mechanisms of these transformations are not fully understood and further experimentation is required to define them, it seems likely that more than one reaction channel is operable and that : CF_2 , :SiH₂, $C_6F_5^*$, F^* , SiH₃*, and H* radicals are formed early in the reaction and play significant roles in the overall processes. Since C_6F_5H was observed in minor amount in almost the entire R range (R = 0.9-0.25) we believe that it is an important primary product which is derived from the reduction of $C_6F_5^*$ by SiH₄ (or some other reducing species present), and generally does not survive the reaction conditions.²⁴

Finally, the reactions can be initiated by irradiating either C_6F_6 at 1027 cm⁻¹ or SiH₄ at 944 cm⁻¹. The products are the same irrespective of the wavelength used. Higher fluences, however, are required to drive the reaction at 944 cm^{-1.25} In general, C_6F_6 seems to be a better energizer (sensitizer) and quencher than SiH₄ for the mixed system. As SiH₄ is added to C_6F_6 , the latter's decomposition (1027 cm⁻¹; 0.7 J/cm²) is enhanced even with small mole fractions of SiH₄ present (<5%) while quenching of C_6F_6 by SiH₄ does not take place until after greater than 85 mol % of SiH₄ is present. As C_6F_6 is required to influence SiH₄ chemistry or initiate C_6F_6 decomposition (944 cm⁻¹, 1.6 J/cm²; Figure 7), but quenching of SiH₄ by C_6F_6 seems to take place efficiently when even as little as 30 mol % of C_6F_6 is present.

Though specific reductive chemistry of C_6F_6 leading to C_6F_5H was only minimally observed in our C₆F₆/SiH₄ study, reduction of C-F bonds on a more efficient scale may be possible by infrared laser irradiation of C_6F_6 . If the process could be controlled whereby explosive reactions could be minimized (e.g., with the use of other H containing species like R-H) it might well be possible to observe the $C_6F_6 + RH \rightarrow C_6F_5H + RF$ reaction as the major process and it could be of preparative and commercial use. In the above study however since Si-H (370 kJ/mol) and C-F (644 kJ/mol) bonds were being broken, and Si-F (606 kJ/mol) and HF (564 kJ/mol) bonds were being formed, the excess energy released during the process gave rise to uncontrolled decompositions. With the use of other hydride reagents, where the difference in energy of the bonds broken to bonds formed would be smaller, one should have a better opportunity of controlling the reaction and obtaining selective reduction of C-F bonds. If this could be demonstrated it would also generate strong support for the intermediacy of the C_6F_5 radical. Such a study is presented in the following article.

Acknowledgment. We acknowledge the discussions of portions of this work with Professors Colin Steel and Ernest Grunwald. Financial support for this work from NSF through Grant CHE 7826310 and NIH through the Biomedical Research Support Grant (RR 07044) is gratefully acknowledged. We also thank the Edith C. Blum Foundation for the HP5992 GC/MS used in this work. P.M.K. thanks the Camille and Henry Dreyfus Foundation for a Dreyfus Teacher–Scholar Award (1979–1984) during which time this study was carried out.

Registry No. C₆F₆, 392-56-3; SiH₄, 7803-62-5; K₂SiF₆, 16871-90-2.

⁽²⁴⁾ We have irradiated C_6F_5H (15 Torr) in the presence of H_2 (12 Torr) (1.4 J/cm², 300 pulses, 1080 cm⁻¹) and have observed, after a 41% conversion of C_6F_5H , all three tetrafluorobenzenes. Though we irradiated the C_6F_6/SiH_4 system at 1027 cm⁻¹ we believe that the C_6F_3H produced could be energized by C_6F_6 and afford the tetrafluorobenzenes via a sensitized pathway.

⁽²⁵⁾ It is possible that the energy requirement differences for the reactions at 1027 and 944 cm⁻¹ are due to the different absorption cross section for the two cases. The average absorption cross section for the 994-cm⁻¹ excited reaction (0.83×10^{-19} cm²/molecule) is lower than that for the 1027-cm⁻¹ excited reaction (5.2×10^{-19} cm²/molecule).