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An Efficient Asymmetric Synthesis of Cascarillic Acid
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Abstract: An efficient six-step asymmetric synthesis of the cyclo-
propane containing natural product cascarillic acid in 41% overall
yield is described. The key synthetic stepsinvolve the use of atem-
porary stereogenic hydroxyl group to control thefacial selectivity of
adirected cyclopropanation reaction and its subsequent removal via
aretro-aldol reaction.
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Cascarillic acid [(354R)-2] is amajor component of cas-
carilla essentia oil that has been used for many yearsin
the treatment of colds and bronchitis.! It contains atrans-
cyclopropane ring within its fatty acid chain, which con-
trasts with the majority of naturally occurring cyclo-
propane fatty acids that are cisin orientation.? Baird and
co-workers have recently confirmed the absolute stereo-
chemistry of this natural product to be 3S4R through its
total synthesis in 11 steps from meso-cis-1,2-dihydroxy-
methylcyclopropane (1, Scheme 1).2 This synthesis in-
cluded an enzymatic desymmetrisation step to introduce
the stereogenic centres of the cyclopropane ring, and an
epimerisation step to invert a cis-cyclopropane ring into
its corresponding trans-isomer. Consequently, we now
report on an aternative synthetic strategy that affords
cascarillic acid 2 in six stepsfrom the chiral auxiliary (R)-
N-isovaleroyl-4-benzyl-5,5-dimethyl-oxazolidin-2-one
(12).

4

HO/\T/\OH . HO\H/\Q\/\/\/
11 steps 8

(¢}
meso-1 (3S.,4R)-2

Schemel A previousasymmetric synthesis of cascarillic acid (2).

We have recently reported the devel opment of novel syn-
thetic strategies to reversibly generate temporary stereo-
genic centres that may be used to create remote
stereocentres using substrate directable reactions.* In
one of these reports, a novel three-step adol—directed
cyclopropanation—retro-aldol protocol was demonstrated
for the asymmetric synthesis of chiral cyclopropane
carboxaldehydesin high ee (Scheme 2).# In this approach,
chiral auxiliary fragment 3 reacts with an a,-unsaturated
aldehyde 4 to give syn-aldol product 5 (step 1), whose
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‘temporary’ B-hydroxyl functionality is used to control
facial selectivity in a directed cyclopropanation reaction
to afford cyclopropane 6 in very high de (step 2). Retro-
aldol cleavage of cyclopropane 6 resultsin destruction of
the ‘temporary’ B-hydroxyl stereocentre, affording the
chiral auxiliary fragment 3 and the desired enantiopure
cyclopropane carboxaldehyde 7 in very high ee (step 3).
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Scheme 2 Three-step syn-aldol—cyclopropanation—retro-aldol pro-
tocol for the asymmetric synthesis of cyclopropane carboxal dehydes.

We anticipated that this cyclopropanation methodology
was ideally suited to the preparation of cascarillic acid
(3S4R)-2, since employing (E)-non-2-enal 8 as an alde-
hyde substrate in this three-step protocol would result in
formation of enantiopure cyclopropane carboxaldehyde
(RR)-9. This aldehyde 9 could then be converted to
cascarillic acid (3S4R)-2 via an oxidative one-carbon
homologation reaction using well established dithiane—
Peterson elimination methodology”® (Scheme 3).
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%—/ R H (iii) retro-aldol H Rl
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Cascarillic acid (3S,4R)-2

Scheme 3 Proposed asymmetric synthesis of cascarillic acid (2).
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Therefore, our first goal was to employ the syn-aldol—di-
rected cyclopropanation—retro-aldol methodology de-
scribed in Scheme2 for the asymmetric synthesis of
cyclopropane (R,R)-9 in high de (Scheme 4). Research
within our group investigating steric factorsthat influence
the retro-aldol reaction of a-akyl-B-hydroxy-N-acyl-ox-
azolidin-2-ones had revealed that N-isovaeroyl-oxazol-
idin-2-one (11) was particularly well suited as a chiral
auxiliary for this methodology. Therefore, (R)-4-benzyl-
5,5-dimethyl-oxazolidin-2-one (10)° was first prepared in
72% yield from unnatural D-phenylalanine using a previ-
ously reported procedure.’® Treatment of 5,5-dimethyl-
oxazolidin-2-one [(R)-10] in THF at —78 °C with 1.1
equivaents of n-BuL.i, followed by addition of 1.1 equiv-
alents of isovaleroyl chloride gave N-isovaleroyl-oxazol -
idin-2-one [(R)-11] in 87% yield. Treatment of N-acyl-
oxazolidin-2-one[(R)-11] with 1.1 equivaents of 9-BBN-
OTf, i-Pr,NEt in CH,CI, at 0 °C, followed by cooling to
—78 °C and addition of (E)-non-2-enal (8) resulted in syn-
aldol 12 in 93% de, which was purified to >95% dein 82%
yield via silica gel chromatography.!! The syn-stereo-
chemistry of aldol 12 was confirmed from the J, 5 cou-
pling constant of 6.5 Hz observed inits'H NMR spectra_12
Reaction of syn-aldol 12 with 5 equivaents of Et,Zn and
CH,l, in CH,CI, at 0 °C, resulted in a highly stereoselec-
tive cyclopropanation reaction to afford syn-cyclopropyl
adol 13 in >95% de and 94% yield.'® Cyclopropanation
under under modified Furukawa conditions are normally
syn-selective due to minimisation of A% strain in the
transition state, and as a consequence the absolute con-
figuration of cyclopropane 13 was assigned accordingly.*4
Treatment of cyclopropane 13 with 1.1 equivalents of
KHMDSin THF at —40 °C afforded a potassium alkoxide
that underwent a clean retro-aldol reaction to give the
parent chiral auxiliary (R)-11 and the desired 2-hexyl-
cyclopropanecarboxal dehyde (R,R)-9 in 85% yield.
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Scheme 4 Reagents and conditions: (i) n-BuLi, isovaeroyl chlori-
de, THF, =78 to 0 °C; (ii) 9-BBN-OTf, i-Pr,NEt, CH,Cl,, 0 °C; (E)-
non-2-enal (8), =78 °C to r.t.; (iii) Et,Zn, CH,l,, CH,Cl,, —10 °C to
0°C, 2 h; (iv) KHMDS, THF, 40 °C, 3 h.
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With (RR)-2-hexylcyclopropanecarbaldehyde (9) in
hand, treatment with the lithium anion of (1,3-dithian-2-
yhtrimethylsilane in THF at —30 °C resulted in nucleo-
philic addition of the dithiane anion to the al dehyde func-
tionality, followed by subsequent Peterson elimination to
afford 2-{[(R,R)-2-hexylcyclopropyl]methylene}-1,3-di-
thiane (14) in >95% de and 93% yield. Therefore, this
reaction was successful in establishing the correct oxida-
tion state of the homologated carbon atom, with no
epimerisation of the cyclopropane ring being observed.
Treatment of ketene thioacetal 14 under sequential acid
and base-catalysed hydrolysis conditions gave cascarillic
acid 2 in >95% de and 78% yield, whose spectroscopic
data was identical to that previously published for this
compound (Scheme 5). The negative sign obtained for
the specific rotation of this synthetic sample of cas-
carillic acid 2 of [a]p?® —11.0 (c 0.41, CHCIy); {lit. 1a
[0]p® —10.5 (c 0.553, CHCI,)}, confirmed that we had
synthesised the correct enantiomer of this natural
product.3
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Scheme 5 Reagents and conditions: (i) n-BuLi, (1,3-dithian-2-
yhtrimethylsilane, THF, 0 °C, 1 h, then (RR)-9, =30 °C, 2 h; (ii) p-
TSA, THF-H,0, 6 h, reflux; (iii) KOH, acetone-H,0, 2 h, reflux.

In conclusion, we have described an efficient six-step
asymmetric synthesis of the cyclopropane containing nat-
ural product cascarillic acid in 41% overdl yield. The key
synthetic steps employed involve the use of a temporary
stereogenic hydroxyl group to control the facial selectivi-
ty of adirected cyclopropanation reaction, and its subse-
guent removal via a retro-aldol reaction. The application
of this methodology to the asymmetric synthesis of other
cyclopropane containing natural productswill be reported
in due course.
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All new compounds were fully characterised. Selected data
for new compounds:
(R)-4-Benzyl-3-[(E)-(2R,3S)-3-hydr oxy-2-isopr opyl-
undec-4-enoyl]-5,5-dimethyl-1,3-oxazolidin-2-one (12):
[a]p® +22.0 (c 0.85, CH,Cl,). *H NMR (300 MHz, CDCl,):
8=7.27-7.11(5H, m, Ph), 5.54-5.71 (2H, m, CH=CHCH,
and CH=CHCH,), 4.53 (1 H, dd, J = 10.0, 4.0 Hz, CHN),
4.36 (1 H, app. t,J=6.5Hz, CHOH), 4.09 (1 H, dd, J = 9.0,

6.5Hz, COCH), 3.09 (1 H, dd, J = 14.5, 4.0 Hz, CH,HgPh),
2.81(1H,dd,J=14.5,10.0Hz, CH,HgPh), 2.04-1.88[4 H,
obs. m, OH, CH=CHCH, and CH(CH,),], 1.35-1.12 [8 H,
m, (CH,),], 1.24[6 H, app. s, (CH),C], 0.90[3H,d,J=7.0
Hz, CH(CH;)CH,], 0.82[3 H, obs. d, J= 7.0 Hz,
CH(CH3)CH4], 0.80 (3 H, obs. t, J = 7.0 Hz, CH,CH,).
BCNMR (75 MHz, CDCly): § = 174.7,153.9, 137.4, 135.8,
129.5,129.1, 128.9, 127.2, 82.4,73.8, 64.3,54.1, 35.9, 32.7,
32.1, 295, 29.3, 28.7, 28.6, 23.0, 22.6, 21.0, 20.4, 14.5. IR
(film): 3501 (br OH), 1778 (C=0,,), 1693 (C=0) cm ™.
HRMS (ES): m/zcaled [M + NH,]*: 447.3217; found:
447.3213.
(R)-4-Benzyl-3-{(R)-2-[(9)-[(1R,2R)-2-hexylcyclo-
propyl](hydr oxy)methyl]-3-methylbutanoyl}-5,5-
dimethyl-1,3-oxazolidin-2-one (13): [a]p?® —21.0 (c 0.62,
MeOH). *H NMR (300 MHz, CDCl,): § = 7.34-7.18 (5 H,
m, Ph), 4.56 (1H, dd, J = 10.0, 3.5 Hz, CHN), 4.22 (1 H, dd,
J=85,6.0Hz, COCH), 3.39 (1 H, dd, J=8.5, 6.0 Hz,
CHOH), 3.23 (1 H, dd, J = 14.5, 3.5 Hz, CH,HgzPh), 2.86
(1H,dd,J=145,10.0 Hz, CH,CHgPh), 231 [1 H, m,
(CH,),CH], 1.85 (1 H, br s, OH), 1.44-1.20 [10 H m,
(CH,)s], 1.34[3H, s, (CH;)C(CHJ)], 1.33[3H, s,
(CH3)C(CH,)], 1.02[3H, d,J = 7.0Hz, CH(CH,)CH,], 1.00
(1 H, obs. m, cyc-CH), 0.93[3H, d, J=7.0 Hz,
CH(CH3)CHg], 0.88(3H,t,J = 7.0Hz, CH,CH;),0.76 (1H,
m, cyc-CH), 0.43 (1 H, app. dt, J = 8.5,4.5Hz, cyc-CH,Hp),
0.28 (1 H, app. dt, J=8.5, 5.0 Hz, cyc-CH,Hg). *C NMR
(75 MHz, CDCl,): 8 =175.1, 153.7, 137.5, 129.4, 129.1,
127.2,82.2, 75.5, 64.4, 54.5, 35.8, 34.2, 32.3, 29.6, 29.5,
28.8,28.6,23.1,22.8,22.2,21.4,21.1,18.8, 14.5,9.6. IR
(film): 3516 (br OH), 1778 (C=0,,), 1693 (C=0) cm ™.
HRMS (ES): m/zcaled [M + NH,]*: 461.3374; found:
461.3370.

(R,R)-2-Hexylcyclopropanecar baldehyde (9): [0]p?®
—26.0 (c 0.35, CH,Cl,). 'H NMR (300 MHz, CDCly): § =
898 (1H,d,J=55Hz CHO), 1.61 (1 H, m, C;H), 1.51—
1.20[11H, m, C,H and (CH,)s], 0.96-0.83 (5H, m, cyc-CH,
and CH,). BCNMR (75 MHz, CDCly): § =201.2, 32.6, 31.7,
30.6, 29.0, 28.9, 22.7, 22.6, 14.9, 14.1. IR (film): 1713
(C=0) cm™. HRMS (ES): m/zcalcd [M + NH,]*: 172.1696;
found: 172.1696.
2-{[(R,R)-2-Hexylcyclopropyl]methylene}-1,3-dithiane
(14): [0]p® —20.0 (c 0.30, CH,Cl,). *H NMR (300 MHz,
CDCl,): $=5.42(1H,d,J=10.0Hz, C=CH),2.91 (4 H, m,
2% SCH,), 2.22-2.13 (2H, m, SCH,CH,), 1.58 (1 H, m,
C=CHCH), 1.41-1.20[10H, m, (CH,).], 0.88 (3H,t,J=7.0
Hz, CH,CH,), 0.79 (1 H, m, cyc-CH), 0.65-0.56 (2 H, m,
cyc-CH,). BC NMR (75 MHz, CDCl,): § = 140.4, 121.6,
34.1,32.3,31.3,30.5,29.7,29.5,26.0, 23.1, 22.2, 20.3, 15.2,
14.5. IR (film):1678 (C=C) cm™*. HRMS (ES): mVz calcd
[M + H]*: 257.1392; found: 257.1393.
2-[(1S,2R)-2-Hexylcyclopropyl]acetic acid [(354R)-
cascarillic acid] (2): [a]p® —11.0 (c 0.41, CHCIy); lit. 1a
[a]p%-10.5(c 0.553, CHCI). *H NMR (300 MHz, CDCly):
8=2.26(2H, app. d, J= 7.0Hz, CH,CO,H), 1.41-1.18[10
H, m, (CH,)g], 0.88 (3H,t,J = 7.0 Hz, CH,CH,), 0.77 (1 H,
m, C;H), 0.56 (1 H, m, C,H), 0.33 (2 H, m, cyc-CH,).

1BC NMR (75 MHz, CDCl,): § = 176.6, 37.5, 32.8, 30.9,
28.3,28.1,21.6,17.7,13.1, 13.0, 10.6. IR (film): 1711
(C=0) cm™™. HRMS (El): m/z calcd [M]*: 184.1458; found:
184.1458.
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