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Abstract: An efficient six-step asymmetric synthesis of the cyclo-
propane containing natural product cascarillic acid in 41% overall
yield is described. The key synthetic steps involve the use of a tem-
porary stereogenic hydroxyl group to control the facial selectivity of
a directed cyclopropanation reaction and its subsequent removal via
a retro-aldol reaction.
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Cascarillic acid [(3S,4R)-2] is a major component of cas-
carilla essential oil that has been used for many years in
the treatment of colds and bronchitis.1 It contains a trans-
cyclopropane ring within its fatty acid chain, which con-
trasts with the majority of naturally occurring cyclo-
propane fatty acids that are cis in orientation.2 Baird and
co-workers have recently confirmed the absolute stereo-
chemistry of this natural product to be 3S,4R through its
total synthesis in 11 steps from meso-cis-1,2-dihydroxy-
methylcyclopropane (1, Scheme 1).3 This synthesis in-
cluded an enzymatic desymmetrisation step to introduce
the stereogenic centres of the cyclopropane ring, and an
epimerisation step to invert a cis-cyclopropane ring into
its corresponding trans-isomer. Consequently, we now
report on an alternative synthetic strategy that affords
cascarillic acid 2 in six steps from the chiral auxiliary (R)-
N-isovaleroyl-4-benzyl-5,5-dimethyl-oxazolidin-2-one
(11).

Scheme 1 A previous asymmetric synthesis of cascarillic acid (2).

We have recently reported the development of novel syn-
thetic strategies to reversibly generate temporary stereo-
genic centres that may be used to create remote
stereocentres using substrate directable reactions.4–6 In
one of these reports, a novel three-step aldol–directed
cyclopropanation–retro-aldol protocol was demonstrated
for the asymmetric synthesis of chiral cyclopropane
carboxaldehydes in high ee (Scheme 2).4 In this approach,
chiral auxiliary fragment 3 reacts with an a,b-unsaturated
aldehyde 4 to give syn-aldol product 5 (step 1), whose

‘temporary’ b-hydroxyl functionality is used to control
facial selectivity in a directed cyclopropanation reaction
to afford cyclopropane 6 in very high de (step 2). Retro-
aldol cleavage of cyclopropane 6 results in destruction of
the ‘temporary’ b-hydroxyl stereocentre, affording the
chiral auxiliary fragment 3 and the desired enantiopure
cyclopropane carboxaldehyde 7 in very high ee (step 3).

Scheme 2 Three-step syn-aldol–cyclopropanation–retro-aldol pro-
tocol for the asymmetric synthesis of cyclopropane carboxaldehydes.

We anticipated that this cyclopropanation methodology
was ideally suited to the preparation of cascarillic acid
(3S,4R)-2, since employing (E)-non-2-enal 8 as an alde-
hyde substrate in this three-step protocol would result in
formation of enantiopure cyclopropane carboxaldehyde
(R,R)-9. This aldehyde 9 could then be converted to
cascarillic acid (3S,4R)-2 via an oxidative one-carbon
homologation reaction using well established dithiane–
Peterson elimination methodology7,8 (Scheme 3).

Scheme 3 Proposed asymmetric synthesis of cascarillic acid (2).
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Therefore, our first goal was to employ the syn-aldol–di-
rected cyclopropanation–retro-aldol methodology de-
scribed in Scheme 2 for the asymmetric synthesis of
cyclopropane (R,R)-9 in high de (Scheme 4). Research
within our group investigating steric factors that influence
the retro-aldol reaction of a-alkyl-b-hydroxy-N-acyl-ox-
azolidin-2-ones had revealed that N-isovaleroyl-oxazol-
idin-2-one (11) was particularly well suited as a chiral
auxiliary for this methodology. Therefore, (R)-4-benzyl-
5,5-dimethyl-oxazolidin-2-one (10)9 was first prepared in
72% yield from unnatural D-phenylalanine using a previ-
ously reported procedure.10 Treatment of 5,5-dimethyl-
oxazolidin-2-one [(R)-10] in THF at –78 °C with 1.1
equivalents of n-BuLi, followed by addition of 1.1 equiv-
alents of isovaleroyl chloride gave N-isovaleroyl-oxazol-
idin-2-one [(R)-11] in 87% yield. Treatment of N-acyl-
oxazolidin-2-one [(R)-11] with 1.1 equivalents of 9-BBN-
OTf, i-Pr2NEt in CH2Cl2 at 0 °C, followed by cooling to
–78 °C and addition of (E)-non-2-enal (8) resulted in syn-
aldol 12 in 93% de, which was purified to >95% de in 82%
yield via silica gel chromatography.11 The syn-stereo-
chemistry of aldol 12 was confirmed from the J(2¢,3¢) cou-
pling constant of 6.5 Hz observed in its 1H NMR spectra.12

Reaction of syn-aldol 12 with 5 equivalents of Et2Zn and
CH2I2 in CH2Cl2 at 0 °C, resulted in a highly stereoselec-
tive cyclopropanation reaction to afford syn-cyclopropyl
aldol 13 in >95% de and 94% yield.13 Cyclopropanation
under under modified Furukawa conditions are normally
syn-selective due to minimisation of A1,3 strain in the
transition state, and as a consequence the absolute con-
figuration of cyclopropane 13 was assigned accordingly.14

Treatment of cyclopropane 13 with 1.1 equivalents of
KHMDS in THF at –40 °C afforded a potassium alkoxide
that underwent a clean retro-aldol reaction to give the
parent chiral auxiliary (R)-11 and the desired 2-hexyl-
cyclopropanecarboxaldehyde (R,R)-9 in 85% yield.

Scheme 4 Reagents and conditions: (i) n-BuLi, isovaleroyl chlori-
de, THF, –78 to 0 °C; (ii) 9-BBN-OTf, i-Pr2NEt, CH2Cl2, 0 °C; (E)-
non-2-enal (8), –78 °C to r.t.; (iii) Et2Zn, CH2I2, CH2Cl2, –10 °C to
0 °C, 2 h; (iv) KHMDS, THF, –40 °C, 3 h.

With (R,R)-2-hexylcyclopropanecarbaldehyde (9) in
hand, treatment with the lithium anion of (1,3-dithian-2-
yl)trimethylsilane in THF at –30 °C resulted in nucleo-
philic addition of the dithiane anion to the aldehyde func-
tionality, followed by subsequent Peterson elimination to
afford 2-{[(R,R)-2-hexylcyclopropyl]methylene}-1,3-di-
thiane (14) in >95% de and 93% yield. Therefore, this
reaction was successful in establishing the correct oxida-
tion state of the homologated carbon atom, with no
epimerisation of the cyclopropane ring being observed.
Treatment of ketene thioacetal 14 under sequential acid
and base-catalysed hydrolysis conditions gave cascarillic
acid 2 in >95% de and 78% yield, whose spectroscopic
data was identical to that previously published for this
compound (Scheme 5). The negative sign obtained for
the specific rotation of this synthetic sample of cas-
carillic acid 2 of [a]D

25 –11.0 (c 0.41, CHCl3); {lit. 1a:
[a]D

25 –10.5 (c 0.553, CHCl3)}, confirmed that we had
synthesised the correct enantiomer of this natural
product.3,15

Scheme 5 Reagents and conditions: (i) n-BuLi, (1,3-dithian-2-
yl)trimethylsilane, THF, 0 °C, 1 h, then (R,R)-9, –30 °C, 2 h; (ii) p-
TSA, THF–H2O, 6 h, reflux; (iii) KOH, acetone–H2O, 2 h, reflux.

In conclusion, we have described an efficient six-step
asymmetric synthesis of the cyclopropane containing nat-
ural product cascarillic acid in 41% overall yield. The key
synthetic steps employed involve the use of a temporary
stereogenic hydroxyl group to control the facial selectivi-
ty of a directed cyclopropanation reaction, and its subse-
quent removal via a retro-aldol reaction. The application
of this methodology to the asymmetric synthesis of other
cyclopropane containing natural products will be reported
in due course.
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(R)-4-Benzyl-3-[(E)-(2R,3S)-3-hydroxy-2-isopropyl-
undec-4-enoyl]-5,5-dimethyl-1,3-oxazolidin-2-one (12): 
[a]D

25 +22.0 (c 0.85, CH2Cl2). 
1H NMR (300 MHz, CDCl3): 

d = 7.27–7.11 (5 H, m, Ph), 5.54–5.71 (2 H, m, CH=CHCH2 
and CH=CHCH2), 4.53 (1 H, dd, J = 10.0, 4.0 Hz, CHN), 
4.36 (1 H, app. t, J = 6.5 Hz, CHOH), 4.09 (1 H, dd, J = 9.0, 

6.5 Hz, COCH), 3.09 (1 H, dd, J = 14.5, 4.0 Hz, CHAHBPh), 
2.81 (1 H, dd, J = 14.5, 10.0 Hz, CHAHBPh), 2.04–1.88 [4 H, 
obs. m, OH, CH=CHCH2 and CH(CH3)2], 1.35–1.12 [8 H, 
m, (CH2)4], 1.24 [6 H, app. s, (CH3)2C], 0.90 [3 H, d, J = 7.0 
Hz, CH(CH3)CH3], 0.82 [3 H, obs. d, J = 7.0 Hz, 
CH(CH3)CH3], 0.80 (3 H, obs. t, J = 7.0 Hz, CH2CH3). 
13C NMR (75 MHz, CDCl3): d = 174.7, 153.9, 137.4, 135.8, 
129.5, 129.1, 128.9, 127.2, 82.4, 73.8, 64.3, 54.1, 35.9, 32.7, 
32.1, 29.5, 29.3, 28.7, 28.6, 23.0, 22.6, 21.0, 20.4, 14.5. IR 
(film): 3501 (br OH), 1778 (C=Oox), 1693 (C=O) cm–1. 
HRMS (ES): m/z calcd [M + NH4]

+: 447.3217; found: 
447.3213.
(R)-4-Benzyl-3-{(R)-2-[(S)-[(1R,2R)-2-hexylcyclo-
propyl](hydroxy)methyl]-3-methylbutanoyl}-5,5-
dimethyl-1,3-oxazolidin-2-one (13): [a]D

25 –21.0 (c 0.62, 
MeOH). 1H NMR (300 MHz, CDCl3): d = 7.34–7.18 (5 H, 
m, Ph), 4.56 (1 H, dd, J = 10.0, 3.5 Hz, CHN), 4.22 (1 H, dd, 
J = 8.5, 6.0 Hz, COCH), 3.39 (1 H, dd, J = 8.5, 6.0 Hz, 
CHOH), 3.23 (1 H, dd, J = 14.5, 3.5 Hz, CHAHBPh), 2.86 
(1 H, dd, J = 14.5, 10.0 Hz, CHACHBPh), 2.31 [1 H, m, 
(CH3)2CH], 1.85 (1 H, br s, OH), 1.44–1.20 [10 H m, 
(CH2)5], 1.34 [3 H, s, (CH3)C(CH3)], 1.33 [3 H, s, 
(CH3)C(CH3)], 1.02 [3 H, d, J = 7.0 Hz, CH(CH3)CH3], 1.00 
(1 H, obs. m, cyc-CH), 0.93 [3 H, d, J = 7.0 Hz, 
CH(CH3)CH3], 0.88 (3 H, t, J = 7.0 Hz, CH2CH3), 0.76 (1 H, 
m, cyc-CH), 0.43 (1 H, app. dt, J = 8.5, 4.5 Hz, cyc-CHAHB), 
0.28 (1 H, app. dt, J = 8.5, 5.0 Hz, cyc-CHAHB). 13C NMR 
(75 MHz, CDCl3): d = 175.1, 153.7, 137.5, 129.4, 129.1, 
127.2, 82.2, 75.5, 64.4, 54.5, 35.8, 34.2, 32.3, 29.6, 29.5, 
28.8, 28.6, 23.1, 22.8, 22.2, 21.4, 21.1, 18.8, 14.5, 9.6. IR 
(film): 3516 (br OH), 1778 (C=Oox), 1693 (C=O) cm–1. 
HRMS (ES): m/z calcd [M + NH4]

+: 461.3374; found: 
461.3370.
(R,R)-2-Hexylcyclopropanecarbaldehyde (9): [a]D

25 
–26.0 (c 0.35, CH2Cl2). 

1H NMR (300 MHz, CDCl3): d = 
8.98 (1 H, d, J = 5.5 Hz, CHO), 1.61 (1 H, m, C1H), 1.51–
1.20 [11 H, m, C2H and (CH2)5], 0.96–0.83 (5 H, m, cyc-CH2 
and CH3). 

13C NMR (75 MHz, CDCl3): d = 201.2, 32.6, 31.7, 
30.6, 29.0, 28.9, 22.7, 22.6, 14.9, 14.1. IR (film): 1713 
(C=O) cm–1. HRMS (ES): m/z calcd [M + NH4]

+: 172.1696; 
found: 172.1696.
2-{[(R,R)-2-Hexylcyclopropyl]methylene}-1,3-dithiane 
(14): [a]D

25 –20.0 (c 0.30, CH2Cl2). 
1H NMR (300 MHz, 

CDCl3): d = 5.42 (1 H, d, J = 10.0 Hz, C=CH), 2.91 (4 H, m, 
2 × SCH2), 2.22–2.13 (2 H, m, SCH2CH2), 1.58 (1 H, m, 
C=CHCH), 1.41–1.20 [10 H, m, (CH2)5], 0.88 (3 H, t, J = 7.0 
Hz, CH2CH3), 0.79 (1 H, m, cyc-CH), 0.65–0.56 (2 H, m, 
cyc-CH2). 

13C NMR (75 MHz, CDCl3): d = 140.4, 121.6, 
34.1, 32.3, 31.3, 30.5, 29.7, 29.5, 26.0, 23.1, 22.2, 20.3, 15.2, 
14.5. IR (film):1678 (C=C) cm–1. HRMS (ES): m/z calcd 
[M + H]+: 257.1392; found: 257.1393.
2-[(1S,2R)-2-Hexylcyclopropyl]acetic acid [(3S,4R)-
cascarillic acid] (2): [a]D

25 –11.0 (c 0.41, CHCl3); lit. 1a: 
[a]D

25 –10.5 (c 0.553, CHCl3). 
1H NMR (300 MHz, CDCl3): 

d = 2.26 (2 H, app. d, J = 7.0 Hz, CH2CO2H), 1.41–1.18 [10 
H, m, (CH2)5], 0.88 (3 H, t, J = 7.0 Hz, CH2CH3), 0.77 (1 H, 
m, C1H), 0.56 (1 H, m, C2H), 0.33 (2 H, m, cyc-CH2). 
13C NMR (75 MHz, CDCl3): d = 176.6, 37.5, 32.8, 30.9, 
28.3, 28.1, 21.6, 17.7, 13.1, 13.0, 10.6. IR (film): 1711 
(C=O) cm–1. HRMS (EI): m/z calcd [M]+: 184.1458; found: 
184.1458.
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