

TETRAHEDRON

Enantioselective Copper-Catalyzed Cyclopropanation of Silyl Enol Ethers

Alexander Ebinger, Thomas Heinz, Gisela Umbricht and Andreas Pfaltz*§

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany

Received 3 February 1998; revised 9 February 1998; accepted 19 February 1998

Abstract: Copper(I) complexes derived from semicorrins, azasemicorrins and bisoxazolines are efficient catalysts for the enantioselective cyclopropanation of silyl enol ethers with diazoacetates. The resulting cyclopropanes can be converted to γ -ketocarboxylates by acid-induced ring cleavage. In this way methyl (2-oxocyclopentyl)- and (2-oxocyclohexyl)acetates have been prepared with up to 90 and 80% ee, respectively. © 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Metal-catalyzed cyclopropanation has become one of the most versatile methods for enantioselective C-C bond formation.¹⁻⁵ The most efficient and most general catalysts are chiral dinuclear rhodium(II) complexes³ and copper complexes with chiral heterocyclic nitrogen ligands such as semicorrins 1^4 , azasemicorrins 2^{4c} or bisoxazolines of type 3.^{2g,4de,5}

An interesting class of substrates for the enantioselective cyclopropanation are silvl enol ethers. $Rei\beta ig$ et al. have carried out extensive studies of the cyclopropanation of these substrates with diazoacetates.⁶ They have also shown that subsequent ring cleavage leads to γ -ketocarboxylates which are useful precursors for organic synthesis (Scheme 1).

§ FAX: +49-208 306 2435; e-mail: pfaltz@mpi-muelheim.mpg.de

The best enantioselectivities (>95% ee) have been reported for the cyclopropanation of 1-(trimethylsilyloxy)styrene derivatives bearing electron-withdrawing *para*-substituents and 2-(trimethylsilyloxy)-1,3butadiene using the bisoxazoline ligand 3.^{6ab} However, the enantioselectivities achieved so far in the transformation shown in Scheme 1 are unsatisfactory. Here, we report that under optimized conditions, synthetically useful ee's and yields can be obtained in the conversion of 1-(silyloxy)cyclopentene and -hexene to the corresponding γ -ketocarboxylates using Cu complexes with azasemicorrins 2 or bisoxazolines 3 as catalysts.

ENANTIOSELECTIVE CYCLOPROPANATION

The synthesis of ligands 1-3 has been previously described.^{4,5} During the course of this work, we developed a convenient alternative procedure for the preparation of the bis(tert-butyl)oxazoline 3 from dimethylmalonodinitrile in one step using the method of *Witte* and *Seeliger*.⁷

As a test reaction, the cyclopropanation of 1-(trimethylsilyloxy)styrene with different alkyl diazoacetates was chosen (Table 1). The reactions were carried out at room temperature using standard procedures.^{4ac,5}

Me ₃ SiO Ph	H N₂CHCO H 1-2 mol% c CHC	OR, 23 °C		Me ₃ SiO 2R Ph	CO₂I	7
Catalyst	Diazoacetate R	Solvent	% Yield 4 + 5	$cis / trans^a$ $4 \cdot 5$	% 4	ee ^a 5
[Cu(1) ₂] ^b	Methyl	Cl(CH ₂) ₂ Cl	74	28 : 72	63	80
2 / Cu(I)OTf	Methyl	Cl(CH ₂) ₂ Cl	70	36 : 64	68	64
3 / Cu(I)OTf	Methyl	CHCl ₃	82	48 : 52	96	89
2 / Cu(I)OTf	Ethyl	Cl(CH ₂) ₂ Cl	81	32 : 68	77	77
3 / Cu(I)OTf	Ethyl	CHCl ₃	77	44 : 56	95	90
2 / Cu(I)OTf	tert-Butyl	Cl(CH ₂) ₂ Cl	82	35 : 65	60	70

Table 1. Enantioselective Cyclopropanation of 1-(Trimethylsilyloxy)styrene

a) Determined by GC; *cis/trans* assignments: see ref. 6c. b) The catalyst was activated by treatment with phenylhydrazine (see exp. procedure in ref. 4a).

Interestingly, the *trans/cis* selectivity is dependent on the ligand (ca. 5:2 with 1, 1:1 with 3), in contrast to the cyclopropanation of styrene which affords essentially identical *trans/cis* ratios with ligands 1-3. On the other hand, as observed by *Reißig et al.*,⁶ very similar *trans/cis* ratios are obtained with methyl, ethyl and *tert*-butyl diazoacetate whereas in analogous reactions with styrene, more bulky esters such as *tert*-butyl diazoacetate give significantly higher *trans/cis* selectivities than methyl or ethyl diazoacetate.

In chloroform with methyl diazoacetate, 96% ee for the *cis* and 89% ee for the *trans* product were obtained, whereas in 1,2-di-chloroethane or dichloromethane the ee's were lower. Consistent with our findings,⁸ Reißig et al. reported 77% ee for the *cis* and 56% ee for the *trans* product in this cyclopropanation with ligand 3 in 1,2-di-chloroethane.^{6a}

Table 2 summarizes the results for the cyclopropanation of 1-(trimethylsilyloxy)cyclopentene. The best enantio-selectivities were recorded in the reaction with methyl diazoacetate and ligand 3. The azasemicorrin 2 gave higher yields but lower ee's. In addition, ligands 6^9 and 7^{10} were also

tested. An interesting reversal of the cis/trans ratio was observed with the indanolamine ligand 6, however, the chemical yields were low. The bisoxazoline 7 and related derivatives gave only very low ee's.

Table 2. Enantioselective Cyclopropanation of 1-(Trimethylsilyloxy)cyclopentene

Catalyst	Diazoacetate	% Yield 8 + 9	cis / trans ^a 8 : 9	% ee ^a		Configuration	
	R			8	9	8	9
$\left[\operatorname{Cu}(1)_{2}\right]^{\mathrm{b}}$	Methyl	54	81 : 19	79	11	1R, 5S, 6S	1S, 5R, 6S
2 / Cu(I)OTf	Methyl	90	68 : 32	85	43	1R, 5S, 6S	1S, 5R, 6S
3 / Cu(I)OTf	Methyl	56	73 : 27	92	87	1S, 5R, 6R	1 R, 5 S, 6R
6 / Cu(I)OTf	Methyl	35	41 : 59	41	63	1S, 5R, 6R	1 R, 5 S, 6 R
7 / Cu(I)OTf	Methyl	53	70:30	24	6	1R, 5S, 6S	1S, 5R, 6S
2 / Cu(I)OTf	Ethyl	70	73 : 27	56	56	1R, 5S, 6S	1S, 5R, 6S
3 / Cu(I)OTf	Ethyl	46	75 : 25	85	40	1S, 5R, 6R	1R, 5S, 6R
7 / Cu(I)OTf	Ethyl	60	65 : 35	0	0	-	-

a) Determined by GC. b) The catalyst was generated from $[Cu(1)_2]$ by treatment with phenylhydrazine (ref. 4a). The reaction was performed in $Cl(CH_2)_2Cl$.

The relative configuration of the products was determined by NOE experiments. For the *cis* isomer $\mathbf{8}$ a distinct NOE between the trimethylsilyl protons and the methyl protons of the ester function was observed, while the *trans* isomer $\mathbf{9}$ exhibited no NOE between these groups.

After screening of different ligands and reaction conditions, we worked out a suitable procedure for preparative scale reactions. We observed that with increasing scale a side reaction leading to methyl [2-(trimethylsilyloxy)cyclopenten-1-yl]acetate gained importance. It seemed likely that this rearrangement of the products 8 and 9 (R = Me) was catalyzed by the copper complex acting as a Lewis acid. By addition of 2 mol% of 2,2,6,6-tetramethylpiperidine, it was possible to suppress this side reaction.

Another problem encountered with increasing scale is the instability of the products 8 and 9 during flash column chromatography on silica gel. It is essential to cleanly separate the *cis/trans* isomers 8 and 9 before subjecting them to the ring-opening procedure (Scheme 2). As shown in Table 2 and Scheme 2, the absolute configuration of the two isomers at C(5) is different and, consequently, ring-opening of 8 and 9 leads to opposite enantiomers of 14. This implies that the use of a *cis/trans* mixture of 8 and 9 results in a ring-opened product of low enantiomeric purity. Therefore it was necessary to find a suitable chromatographic method for

separating the two isomers. Using a florisilTM column and hexane/ Et_2O (95:5) as eluent, it was possible to obtain the pure *cis* and *trans* isomers in satisfactory yield. In an experiment with 15 mmol of 1-(trimethyl-silyloxy)cyclopentene, 30 mmol of methyl diazoacetate, 2 mol% of CuOTf/3 and 2 mol% of 2,2,6,6-tetra-methylpiperidine in chloroform, the two isomeric products were isolated in a total yield of 43% (8:9 = 66:34, 8: 90% ee, 9: 84% ee).

As an alternative solution of this problem, we decided to increase the stability of the labile silyl ether function by replacing the trimethylsilyl by a triisopropylsilyl group. Cyclopropanation of 1-(triisopropylsilyloxy)cyclopentene with methyl diazoacetate under standard conditions led to the products in good yield and the ee's were essentially the same as in the cyclopropanation of the corresponding trimethylsilyl derivatives. The *cis* and *trans* products proved to be sufficiently stable to allow separation by MPLC on silica gel (hexane/EtOAc 97:3). In this way, the pure *cis* and *trans* isomers could be isolated in a total yield of 56% (*cis:trans* = 52:48; 89 and 84% ee, respectively) in an experiment on a 5.0 mmol scale with 2 mol% of 3/CuOTf.

$H \longrightarrow OSiMe_{3}$ $N_{2}CHCOOR, 23 \circ C$ $1-2 \text{ mol% of catalyst}$ $CI(CH_{2})_{2}CI$ $RO_{2}C_{n}$ $RO_{2}C_{n}$ $OSiMe_{3}$ I I I I I I							e ₃
Catalyst	Diazoacetate R	% Yield 10 + 11	<i>cis / trans</i> ^a 10 : 11	% (10	ee ^a 11	Config 10	uration 11
2 / Cu(I)OTf ^b	Methyl	47	61 : 39	69	n.d.	1R, 6S, 7S	1S, 6R, 7S
2 / Cu(I)OTf	Methyl	40	76 : 24	76	n.d.	1 R, 6S, 7S	1 S, 6R, 7S
3 / Cu(I)OTf ^c	Methyl	7	27 : 73	11	n.d.	1 S, 6R, 7 R	1R, 6S, 7R
3 / Cu(I)OTf ^d	Methyl	13	78 : 22	18	n.đ.	1S, 6R, 7R	1R, 6S, 7R
2 / Cu(I)OTf	Ethyl	25	67 : 33	72	n.d.	1 R, 6S, 7 S	1S, 6R, 7S
2 / Cu(I)OTf	tert-Butyl	39	68 : 32	65	n.d.	1 R, 6S, 7 S	1S, 6R, 7S

Table 3. Enantioselective Cyclopropanation of 1-(Trimethylsilyloxy)cyclohexene

a) Determined by GC. b) At 82 °C. c) In CHCl₃. d) In boiling toluene.

The cyclopropanation of 1-(trimethylsilyloxy)cyclohexene (Table 3) proved to be difficult because the enol ether and the resulting silyloxycyclopropanes were found to decompose much more readily than the fivemembered ring analogues. With catalyst 3/CuOTf only very low yields were obtained and the *cis/trans* ratios fluctuated considerably from one experiment to the next. The azasemicorrin 2 was the ligand of choice in this case, giving ee's of up to 76% ee with yields ranging between 40 and 50%. Unfortunately, no suitable method for determining the ee of the *trans* product was found. Better results were obtained with the corresponding triisopropylsilyl enol ether. In a reaction on a 5.5 mmol scale with subsequent purification by MPLC, the pure *cis* and *trans* isomers were obtained in a total yield of 50% (*trans:cis* = 69:31) with 81 and 86% ee, respectively (Scheme 3).

CLEAVAGE OF THE CYCLOPROPANE RING

The cis- and trans-silyloxycyclopropanes could be converted to the corresponding γ -ketocarboxylates in high yield (Schemes 2 and 3).

The trimethylsilyl derivatives readily underwent electrophilic ring-opening in refluxing methanol containing a few drops of acetic acid. For the ring-opening of the more stable triisopropylsilyl ethers it was more difficult to find a suitable method leading to the desired product without concomitant racemization. After extensive screening of reagents and conditions, the following procedure was worked out: a solution of the (triisopropyloxy)cyclopropane and 25 equivalents of HF-pyridine complex was stirred in dichloromethane at -78 °C for a few hours and then directly filtered through silica gel. After purification by flash column chromatography or Kugelrohr distillation, the product could be isolated in high yields of up to 95%. Using this procedure, methyl (2-oxocyclopentyl)acetate and the corresponding six-membered ring analogue were prepared with ee's of up to 90 and 80%, respectively. As shown in Scheme 3, racemization could not be fully suppressed in the reactions of the cyclohexane derivatives 15 and 16.

The absolute configuration of products 14^{11} and 17^{12} was determined based on the optical rotation values reported in the literature. Consequently, the absolute configuration of the silyloxycyclopropanes could be assigned by correlation with the ring-opened products as shown in Schemes 2 and 3.

CONCLUSION

We have shown that silvl enol ethers can be converted to optically active silvloxycyclopropanes with good enantioselectivities by copper-catalyzed cyclopropanation using chiral azasemicorrin or related bisoxazoline ligands. Problems caused by the instability of the trimethylsilvl ethers were overcome by replacing the trimethylsilvl by a triisopropylsilvl group. Starting from triisopropylsilvl enol ethers, the two step sequence, cyclopropanation - ring-opening, allows the enantioselective introduction of an acetic acid side chain at the α -position of cycloalkanones.

Acknowledgement. Financial support by the Swiss National Science foundation and the Max Planck Society is gratefully acknowledged. We thank Dr. David Miller for preparing ligand 7.

EXPERIMENTAL

General: $[Cu(OTf) \cdot (C_6H_6)_{0.5}]$: Fluka, pract.; chlorobenzene: Fluka, purum.; 1-(trimethylsiloxy)cyclohexene: Fluka, purum; 1-(trimethylsiloxy)cyclopentene: Fluka, purum; 1-phenyl-1-(trimethylsiloxy)ethene: Fluka, purum; methyl and *tert*-butyl diazoacetate: ref. 13 and 14; ethyl diazoacetate: Fluka, purum; L-*tert*-leucinol: prepared from L-*tert*-leucine (Fluka) according to ref. 15; (triisopropyl)silyl enol ethers: prepared according to ref. 16. All reactions were carried out under an argon atmosphere using dried glassware. Flash column chromatography: silica gel 60, Merck; florisilTM: 30-60 mesh, Fluka. TLC: silica gel 60, Merck, 0.25 mm. Specific rotations were measured on a Perkin Elmer 241 polarimeter at room temperature or on a Jasco DIP-360 Digital Polarimeter, estimated error ±5%. IR (CHCl₃): selected bands in cm⁻¹. NMR (CDCl₃): δ in ppm *vs*. TMS, J in Hz; ¹H: 300 or 200 MHz; ¹³C: 75 MHz or 50 MHz, assignments based on DEPT or APT spectra. MS: selected peaks; *m/z* (%). GC: OV-1701, 30 m x 0.25 mm, 0.25 µm (Restek Co.); chiral column (β -CD): Wcot fused silica coated with CP cyclodextrin B 236M, 25 m x 0.25 mm, 0.25 µm (Chrompack).

Synthesis of Bisoxazoline 3. General procedure: 2,2-Bis[2-{(4S)-4,5-dihydro-4-(tert-butyl)oxazolyl]]propane (3). A mixture of 1.53 g (13.1 mmol, 2.4 eq) of L-tert-leucinol, 0.507 g (5.4 mmol) of dimethylmalonodinitrile¹⁷, and 0.750 g (5.5 mmol) of anhydrous ZnCl₂ in 25 ml of chlorobenzene was refluxed for 72 h. The reaction was monitored by TLC. After removal of the solvent *in vacuo*, the residue was dissolved in CH₂Cl₂ and carefully washed with aqueous KOH (3 x 20 ml, 10%). After drying of the organic layer (Na₂SO₄) the solvent was evaporated and the residue dissolved in pentane and filtered. After removal of the pentane *in vacuo* 1.66 g of yellowish crystals were obtained. Recrystallization from pentane yielded 1.25 g of 3 (80%) as colorless crystals. mp: 90-91 °C. $[\alpha]_D = -108$ (c = 0.975, CH₂Cl₂), $[\alpha]_{365} = -383$ (c = 0.975, CH₂Cl₂). IR: 1660 s, 1480 m, 1395 w, 1365 m. ¹H-NMR: 4.15 (dd, J = 10.0, 8.7, 2H, H_AC(5,5')), 4.08 (dd, J = 8.7, 7.0, 2H, HC(4,4')), 3.85 (dd, J = 10.0, 7.0, 2H, H_BC(5,5')), 1.52 (s, 6H, C(CH₃)₂), 0.88 (s, 18H, C(CH₃)₃). ¹³C-NMR: 168.4 (C(2,2'), 75.6 (HC(4,4')), 69.0 (H₂C(5,5')), 38.5 (<u>C</u>(CH₃)₂), 33.9 (<u>C</u>(CH₃)₃), 25.7 (C(<u>C</u>H₃)₃), 24.5 (C(<u>C</u>H₃)₂). MS (EI): 294 (<1, M⁺), 279 (7, M⁺- CH₃), 237 (100, M⁺- C(CH₃)₃), 169 (49), 137 (44), 111(20), 57 (43, C(CH₃)₃)⁺, 41 (41). TLC (hexane / EtOAc 7:3): R_f = 0.20. Anal. Calcd. for C₁₇H₃₀N₂O₂: C, 69.35, H, 10.27; N, 9.51. Found: C, 69.39; H, 10.27; N, 9.54. **Cyclopropanation.** General procedure for 4 and 5: Reactions were carried out according to the general procedure in ref. 4a (ligand 1) and refs. 4c and 5 (ligands 2 and 3). After evaporation of the solvent *i.v.* the crude mixture was filtered through a short column of florisilTM (hexane/Et₂O 90:10). The solvent was removed and the crude product was purified by column chromatography (silica gel, hexane/EtOAc 98:2).

cis/trans-mixture of Methyl [2-phenyl-2-(trimethylsilyloxy)]cyclopropane-1-carboxylate 4 and 5 (R = Me). IR: 1730 s, 1680 w, 1600 w, 1450 w, 1440 m, 1370 m, 1325 w, 1280 w, 1260 m, 1250 s, 1165 s, 1105 w, 1075 w, 1055 w, 1040 w, 1000 w, 980 w, 950 w, 910 m, 840 s, 700 m. ¹H-NMR: 7.98-7.95 (m, 0.8H, arom. H), 7.56-7.25 (m, 5H, arom. H), 3.73 (s, 1.15H, OCH₃/cis), 3.41 (s, 1.85H, OCH₃/trans), 2.30 (dd, J = 9.3, 7.0, 0.6H, CH₂/cis), 1.99-1.93 (m, 1.4H, CH₂/trans), 1.69 (dd, J = 7.9, 5.0, 0.4H, CH/cis), 1.53 (dd, J = 9.3, 5.8, 0.6H, CH/trans), 0.07 (s, 3.5H, Si(CH₃)₃/cis), -0.05 (s, 5.4H, Si(CH₃)₃/trans). ¹³C-NMR: 170.5 (C=O/trans), 169.5 (C=O/cis), 137.9 (arom. C/cis), 132.9 (arom. C/trans), 128.6, 128.4, 128.2, 127.9, 127.8, 127.1, 125.6, 125.1, (arom. CH), 65.5 (C(1)/trans), 63.5 (C(1)/cis), 51.7 (OCH₃/cis), 51.4 (OCH₃/trans), 30.9 (C(2)/cis), 30.2 (C(2)/trans), 20.4 (C(3)/cis), 19.6 (C(3)/trans), 0.8 (Si(CH₃)₃). MS (CI, NH₃): 266 (20), 265 (100, M⁺+1), 233 (45), 193 (18), 175 (59), 161 (14), 121 (15), 105 (23), 90 (42), 73 (12). TLC (hexane/EtOAc 9:1): $R_f = 0.40$. Anal. Calcd. for $C_{14}H_{20}O_3$ Si: C, 70.79; H, 11.88. Found: C, 70.04; H, 11.94. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 33.2 min (trans), t_R = 37.2 min (cis); β-CD, 0.6 bar H₂, 120 °C, 0.3 °C/min, t_R = 24.4/24.9 min (trans), t_R = 29.2/29.7 min (cis).

Ethylesters 4 and 5 (R = Et). IR: 1720 s, 1600 w, 1450 m, 1380 m, 1175 s, 1080 w, 970m, 930 m, 860 s, 840 s, 700 m. ¹H-NMR: 7.44-7.41 (m, 1H, arom. H), 7.34-7.24 (m, 4H, arom. H), 4.19 (q, J = 7.1, 0.77H, CH₂CH₃/cis), 3.85 (sym. m, 1.27H, CH₂CH₃/trans), 2.28 (dd, J = 9.2, 7.0, 0.59H, H₂C(3)/cis), 1.99-1.91 (m, 1.5H, H₂C(3)/trans), 1.66 (dd, J = 8.1, 5.2, 0.4H, HC(2)/cis), 1.51 (dd, J = 9.3, 5.9, 0.68H, HC(2)/trans), 1.28 (t, J = 7.1, 1.3H, CH₂CH₃/cis), 0.96 (t, J = 7.1, 1.9H, CH₂CH₃/trans), 0.07 (s, 3.1H, Si(CH₃)₃/cis), -0.05 (s, 5.0H, Si(CH₃)₃/trans). ¹³C-NMR: 170.1 (C=O/trans), 169.0 (C=O/cis), 142.8 (arom. C/cis), 138.0 (arom. C/trans), 128.8, 128.2, 127.9, 127.8, 127.1, 125.6 (arom. CH), 65.3 (C(1)/trans), 63.5 (C(1)/cis), 60.5 (CH₂CH₃/cis), 60.1 (CH₂CH₃/trans), 31.0 (C(2)/cis), 30.3 (C(2)/trans), 20.1 (C(3)/cis), 19.2 (C(3)/trans), 14.3 (CH₂CH₃/cis), 13.9 (CH₂CH₃/trans), 0.75 (Si(CH₃)₃/cis), 0.70 (Si(CH₃)₃/trans). MS (CI, NH₃): 280 (21), 279 (100, M⁺+1), 233 (32), 207 (27), 189 (38), 161 (9), 90 (57). TLC (hexane/EtOAc 9:1): R_f = 0.36. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 48.0 min (trans), t_R = 51.4 min (cis); β-CD, 0.7 bar H₂, 90 °C, 0.1 °C/min, t_R = 146.9/148.2 (cis).

tert-Butylesters 4 and 5 (R = tert-Bu). IR: 1720 s, 1460 w, 1450 w, 1420 w, 1390 m, 1370 m, 1320 w, 1300 w, 1250 s, 1150 s, 1105 w, 1075 w, 1050 w, 1030 w, 1020 w, 970m, 860 m, 840 s, 700 m. ¹H-NMR: 7.45-7.42 (m, 1H, arom. H), 7.33-7.23 (m, 4H, arom. H), 2.20 (dd, J = 9.2, 7.0, 0.5H, H₂C(3)/cis), 1.93-1.85 (m, 1.4H, H₂C(3)/trans), 1.60-1.51 (m, 0.4H, HC(1)/cis), 1.48 (s, 4H, C(CH₃)₃/cis), 1.44-1.39 (m, 0.6H, HC(1)/trans), 1.13 (s, 5H, C(CH₃)₃/trans), 0.06 (s, 3H, Si(CH₃)₃/cis), -0.05 (s, 5H, Si(CH₃)₃/trans); additional signals at 1.32-1.27, 0.91-0.87 (ca. 0.2 equivalents of di(tert-butyl) fumarate and maleate). ¹³C-NMR: 169.1 (C=O/trans), 168.0 (C=O/cis), 143.1 (arom. C/cis), 138.3 (arom. C/trans), 129.0, 127.7, 127.0, 125.7 (arom. CH), 80.1 (C(CH₃)₃/cis), 79.9 (C(CH₃)₃/trans), 65.0 (C(1)/trans), 62.9 (C(1)/cis), 32.1 (C(2)/cis), 31.3 (C(2)/trans), 28.2 (C(CH₃)₃/cis), 27.7 (C(CH₃)₃/trans), 19.3 (C(3)/cis), 18.7 (C(3)/trans), 0.78 (Si(CH₃)₃/cis), 0.71 (Si(CH₃)₃/trans). MS (CI, NH₃): 323 (6.7, M⁺+NH₃), 252 (20), 251 (100, M⁺-C(CH₃)₃+2), 250 (8.2), 233 (18), 179 (9.3), 161 (31), 90 (30). TLC (hexane/EtOAc 9:1): R_f = 0.34. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 53.2 min (trans), t_R = 55.3 min (cis); β-CD, 0.7 bar H₂, 120 °C, isotherm, t_R = 49.6/50.7 min (trans), t_p = 54.6/55.3 (cis).

cis- and trans-Methyl 1-(trimethylsilyloxy)bicyclo[3.1.0]hexane-6-carboxylates 8 and 9 (R = Me). A mixture of [Cu(OTf)•(C₆H₆)_{0.5}] (74.0 mg, 0.294 mmol) and ligand 3 (95.2 mg, 0.323 mmol, 1.1 eq.) in 5 ml of CHCl₃ was stirred for 3 h. After filtration through a micro filter (pore diameter 0.2 µm) under an argon atmosphere the solution was transferred to another flask. A solution of 1-trimethylsiloxycyclopentene (2.62 ml, 14.7 mmol) and 2,2,6,6-tetramethylpiperidine (50 µl, 2 mol%) in 15 ml CHCl₃ was added. Using a syringe pump, a solution of methyldiazoacetate (2.94 g, 29.4 mmol, 2.0 eq.) in 7 ml of CHCl₃ was added over a period of 4 h. After completion of the addition the reaction mixture was allowed to stir for an additional

12 h. The solvent was removed *in vacuo*, and the resulting brownish oil was rapidly flushed through a small column of florisilTM (1.5x7 cm, hexane/Et₂O 95:5), yielding 4.0 g of a colorless oil. The separation of *cis/trans*-isomers by chromatography (7x25 cm, hexane/Et₂O 97:3) with florisilTM was conducted twice giving 0.49 g of the pure *trans*- and 0.97 g of the pure *cis*-isomer (43% total yield).

trans-Methylester 9 (R = Me). [α]_D = -49.5 (c = 0.45, CHCl₃, at 80% ee). IR: 1725 s, 1640 w, 1530 w, 1470 w, 1435 m, 1400 m, 1350 m, 1310 w, 1300 w, 1250 s, 1220 b s, 1170 m, 1080 m, 1040 m, 925 m, 840 s. ¹H-NMR: 3.67 (s, 3H, OCH₃), 2.25 (ddd, J = 12.8, 9.0, 2.2, 1H, H_AC(2)), 2.08-1.97 (m, 3H,H_BC(2), H_AC(4), HC(6)), 1.81-1.71 (m, 3H, H_AC(3), H_BC(4), HC(5)), 1.34-1.23 (m, 1H, H_BC(3)), 0.16 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 170.5 (C=O), 70.6 (C(1)), 51.4 (OCH₃), 32.9 (C(2)), 31.76, 31.72 (C(5), C(6)), 24.7 (C(4)), 22.7 (C(3)), 0.7 (Si(CH₃)₃). MS (CI, NH₃): 229 (34, M⁺+1), 197 (14), 169 (15), 139 (100, M⁺-OSi(CH₃)₃), 107 (12), 90 (22). TLC (hexane/EtOAc 9:1): R_f = 0.40. GC: β-CD, 0.55 bar H₂, 80 °C, 0.2 °C/min, t_R = 48.8/50.2 min (1S, SR, 6S/1R, 5S, 6R).

cis-Methylester 8 (R = Me). [α]_D = - 26.3 (c = 0.54, CHCl₃, at 81% ee). ¹H-NMR: 3.64 (s, 3H, OCH₃), 2.13-1.85 (m, 4H, H₂C(2), H_AC(4), HC(6)), 1.70-1.57 (m, 3H, H_AC(3), H_BC(4), HC(5)), 1.14-1.02 (m, 1H, H_BC(3)); 0.11 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 170.6 (C=O), 71.8 (C(1)), 51.3 (OCH₃), 34.6 (C(2)), 31.9 (C(6)), 28.5 (C(5)), 26.2 (C(4)), 20.5 (C(3)); 0.6 (Si(CH₃)₃). TLC (hexane/EtOAc 9:1): R_f = 0.32. GC: β-CD, 0.55 bar H₂, 80 °C, 0.2 °C/min, t_B = 60.5/61.5 min (1S, 5R, 6R/1R, 5S, 6S).

trans-Ethylester **9** (R = Et). IR: 1725 s, 1407 m, 1370 m, 1350 m, 1254 s, 1232 m, 1175 m, 1160 m, 890 m, 845 m. ¹H-NMR: 4.14/4.12 (2q, J = 7.2, 1.5, 2H, <u>CH</u>₂CH₃), 2.26 (ddd, J = 12.8, 8.8, 1.9, 1H, H_AC(2)), 2.09-1.97 (m, 3H, H_BC(2), H_AC(4), HC(6)), 1.84-1.62 (m, 3H, H_AC(3), H_BC(4), HC(5)), 1.27 (m with t, J = 7.1, 4H, H_BC(3), CH₂CH₃), 0.17 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 170.1 (C=O), 70.5 (C(1)), 60.2 (<u>CH</u>₂CH₃), 32.9 (C(2)), 31.9, 31.6 (C(6), (C(5)), 24.8 (C(4)), 22.7 (C(3)), 14.3 (CH₂CH₃); 0.7 (Si(CH₃)₃). MS (CI, NH₃): 244 (11), 243 (14, M⁺+1), 197 (15), 171 (32), 169 (14), 154 (10), 153 (100, M⁺ –OSi(CH₃)₃), 90 (32, HOSi(CH₃)₃). TLC (hexane/EtOAc 9:1): R_f = 0.28. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 24.6 min; β-CD, 0.55 bar H₂, 80 °C, 0.2 °C/min, t_R = 66.1/68.0 (1S, SR, 6S/1R, 5S, 6R).

cis-Ethylester 8 (R = Et). ¹H-NMR: 4.10 (q, J = 7.1, 2H, <u>CH</u>₂CH₃), 2.13-1.89 (m, 4H, H₂C(2), H_AC(4), HC(6)), 1.68-1.58 (m, 3H, H_AC(3), H_BC(4), HC(5)), 1.24 (t, J = 7.1, 3H, CH₂<u>CH</u>₃), 1.18-1.00 (m, 1H, H_BC(3)), 0.12 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 170.2 (C=O), 71.8 (C(1)), 60.1 (<u>CH</u>₂CH₃), 34.6 (C(2)), 31.9, 28.4 (C(6), (C(5)), 26.3, 20.6 (C(3), C(4)), 14.3 (CH₂<u>CH</u>₃), 0.71 (Si(CH₃)₃). TLC (hexane/EtOAc 9:1): $R_f = 0.22$. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, $t_R = 28.3$ min; β-CD, 0.55 bar H₂, 80 °C, 0.2 °C/min, $t_R = 77.9/78.7$ (1S, SR, 6S/1R, 5S, 6R).

Methyl 1-(triisopropylsilyloxy)bicyclo[3.1.0]hexane-6-carboxylates 12 and 13. A mixture of $[Cu(OTf) \cdot (C_6H_6)_{0.5}]$ (25.8 mg, 0.102 mmol) and ligand 3 (33.2 mg, 0.113 mmol, 1.1 eq.) in 5 ml of CHCl₃ was stirred for 2 h. The solution was filtered using a micro filter (pore diameter 0.2 µm) under an argon atmosphere and transferred to another flask. A solution of 1-tri(isopropyl)silyloxycyclopentene (1.20 g, 5.0 mmol) and 2,2,6,6-tetramethylpiperidine (17 µl, 2 mol%) in 25 ml CHCl₃ was added. A solution of methyl diazoacetate (1.10 g, 11.0 mmol, 2.2 eq.) in 4 ml of CHCl₃ was added at 23 °C over a period of 5 h by a syringe pump. To start the reaction it was sometimes necessary to heat the mixture to 60 °C for a short time until N₂-evolution occurred. After completion of the addition the reaction mixture was allowed to stir for an additional 12 h. The solvent was removed *in vacuo*, and the resulting brownish oil was rapidly flushed through florisilTM (1.5x7 cm, hexane/Et₂O 90:10), yielding 1.45 g of a colorless oil. Separation of the *cis/trans*-isomers by MPLC (4x20 cm, Silica 100 Sichroprep Merck, hexane/Et₂O 99:1, flow 30 ml/min) gave 0.36 g of the pure *trans*- and 0.51 g of the pure *cis*-isomer (55% total yield).

trans-Methylester 13 (R = Me). [α]_D = -53.5 (c = 0.53, CHCl₃, at 86% ce). IR: 2947 s, 2890 s, 1727 s, 1602 w, 1464 m, 1438 m, 1402 m, 1353 s, 1271 m, 1172 s, 1150 m, 1079 m, 884 m, 856 m. ¹H-NMR: 3.67 (s, 3H, OCH₃), 2.31 (dd, J = 9.0, 2.5, 1H, H_AC(2)), 2.13-2.03 (m, 3H, H_BC(2), H_AC(4), C(6)), 1.82-1.74 (m, 3H, H_AC(3), H_BC(4), HC(5)), 1.44-1.39 (m, 1H, H_BC(3)), 1.10-1.06 (m, 21H, OSi<u>CH(CH₃)</u>, OSiCH(<u>CH₃)</u>, 0. ¹³C-NMR: 170.8 (C=O), 71.5 (C(1)), 51.4 (OCH₃), 33.1 (C(2)), 33.0, 32.5 (C(6), C(5)), 25.0 (C(4)), 22.9 (C(3)), 18.0 (SiCH(<u>CH₃)</u>, 12.5 (Si<u>CH(CH₃)</u>). MS: 312 (1, M⁺), 281 (1), 269 (100), 253 (14), 239 (14), 157 (11),

145 (30), 115 (22), 89 (12), 75 (18), 73 (17), 59 (26). TLC (hexane/EtOAc 9:1): $R_f = 0.55$. GC: OV 1701, 0.6 bar H_2 , 90 °C, 1 °C/min, $t_R = 69.2$ min; β -CD, 0.55 bar H_2 , 80 °C, 0.5 °C/min, $t_R = 122.7/123.3$ (18, 5R, 6S/1R, 5S, 6R).

cis-Methylester 12 (R = Me). [α]_D = -27.4 (c = 0.48, CHCl₃, at 84% ee). ¹H-NMR: 3.64 (s, 3H, OCH₃), 2.20-1.85 (m, 5H, H_AC(3), H₂C(2), H_BC(4), C(6)), 1.75-1.55 (m, 3H, H_BC(4), HC(5), H_BC(3)), 1.10-1.06 (m, 21H, OSi<u>CH</u>(CH₃)₂, OSiCH(<u>CH₃</u>)₂). ¹³C-NMR: 170.6 (C=O), 72.1 (C(1)), 51.4 (OCH₃)), 34.4 (C(2)), 32.2 (C(6)), 28.9 (C(5)), 26.2 (C(4)), 20.5 (C(3)), 18.0 (SiCH(<u>CH₃</u>)₂), 12.9 (Si<u>CH</u>(CH₃)₂). TLC (hexane/EtOAc 9:1): R_f = 0.49. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 74.3 min; β-CD, 0.55 bar H₂, 80 °C, 0.5 °C/min, t_R = 131.3 (no separation of enantiomers).

cis- and trans-Methyl 1-(trimethyl)bicyclo[3.1.0]heptane-7-carboxylates 10 and 11 (R = Me). General procedure for 10 and 11: Reactions were carried out according to the general procedure in refs. 4c and 5 (ligands 2 and 3). After evaporation of the solvent *i.v.* the crude mixture was filtered through a short column of florisilTM (hexane/Et₂O 90:10). The solvent was removed and the crude product was purified by column chromatography (silica gel, hexane/EtOAc 98:2). All reactions were carried out on a 1.0 mmol scale.

trans-Methylester 11 (R = Me). IR: 2935 s, 2866 m, 1737 s, 1437 m, 1415 m, 1363 m, 1310, m, 1251 s, 1193 s, 1160 s, 1108 m, 1079 w, 1053 w, 1005 s, 952 w, 931 w, 895m, 876 m, 843 s. ¹H-NMR: 3.65 (s, 3H, OCH₃), 2.19-2.12 (m, 1H, H_AC(2)), 1.96-1.85 (m, 2H, H_BC(2), HC(7)), 1.72-1.55 (m, 2H, HC(6), H_AC(5)), 1.44-1.30 (m, 5H, H₂C(3), H₂C(4), H_BC(5)), 0.13 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 170.8 (C=O), 60.7 (C(1)), 51.2 (OCH₃), 31.3 (C(7)), 29.2 (C(2)), 26.1 (C(6)), 21.3, 20.9, 18.9 (C(3), C(4), C(5)), 1.15 (Si(CH₃)₃). MS(EI): 242 (11), 227 (21), 211 (18), 210 (58), 184 (10), 183 (56), 182 (30), 169 (13), 168 (23), 167 (8), 137 (11), 121 (11), 110 (11), 109 (13), 89 (24), 82 (10), 81 23), 75 (21), 73 (100), 59 (15), 55 (8), 45 (24), 41(8). TLC (hexane/EtOAc 9:1): R_f = 0.40. GC: OV 1701, 1.2 bar H₂, 90 °C, 1 °C/min, t_R = 27.3 min; β-CD, 0.6 bar H₂, 80 °C, 0.5 °C/min, t_R = 48.2 min (no separation of enantiomers).

cis-Methylester **10** (*R* = *Me*). ¹H-NMR: 3.64 (s, 3H, OCH₃), 2.19 (dt, J = 5.1, 14.0, 1H, H_AC(2)), 2.05-1.97 (m, 2H, HC(6), HC(7)), 1.94-1.84 (m, 1H, H_BC(2)), 1.54-1.42 (m, 3H, H_AC(3), HC(4)), 1.28-1.20 (m, 2H, H_BC(3), H_AC(5)), 1.18-1.07 (m, 1H, H_BC(5)), 0.12 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 170.9 (C=O), 63.6 (C(1)), 51.4 (OCH₃), 32.8 (C(2)), 32.0 (C(7)), 27.8 (C(6)), 23.5 (C(5)), 21.4, 20.9 (C(3), C(4)), 1.01 (Si(CH₃)₃). TLC (hexane/EtOAc 9:1): R_f = 0.28. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 ° /min, t_R = 31.9 min; β-CD, 0.6 bar H₂, 80 °C, 0.5 °C/min, t_R = 56.5/57.3 (1S, 6R, 7S/1R, 6S, 7R).

trans-Ethylester 11 (R = Et). IR: 2937 s, 1729 s, 1464 w, 1447 m, 1413 m, 1370 w, 1349 m, 1252 s, 1202 s, 1153 s, 1110 s, 1045 w, 986 m, 877 s, 842 s. ¹H-NMR: 4.20-4.05 (m, 2H, <u>CH</u>₂CH₃), 2.30-2.05 (m, 1H, H_AC(2)), 1.95-1.18 (m, 12H, H_BC(2), H₂C(4), HC(6), H₂C(3), H₂C(5), CH₂<u>CH</u>₃), 0.10 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 169.9 (C=O), 60.1 (C(1)), 59.5 (<u>CH</u>₂CH₃), 31.0 (C(7)), 28.8 (C(2)), 25.5 (C(6)), 21.0 (C(4)), 20.5 (C(5)), 18.5 (C(3)), 14.0 (CH₂<u>CH</u>₃); 0.76 (Si(CH₃)₃). MS (EI): 256 (32, M⁺), 227 (33), 211 (18), 210 (30) 184 (9), 183 (54), 182 (15), 169 (9), 168 (18), 137 (31), 121 (9), 109 (8), 75 (25), 73 (100), 45 (15). TLC (hexane/EtOAc 9:1): R_f = 0.53. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 32.8 min; β-CD, 0.60 bar H₂, 80 °C, 0.5 °C/min, t_R = 58.7 (no separation of enantiomers).

cis-Ethylester **10** (*R* = *Et*). ¹H-NMR: 4.09 (dq, J = 7.1, 1.0, 2H, <u>CH</u>₂CH₃), 2.25-1.75 (m, 4H, H₂C(2), H_AC(5), HC(7)), 1.55-1.35 (m, 3H, H_AC(3), H_BC(5), HC(6)), 1.25 (m with t, J = 7.1, 6H, CH₂<u>CH</u>₃, H₂C(4), H_BC(3)), 0.05 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 170.1 (C=O), 63.2 (C(1)), 59.8 (<u>CH</u>₂CH₃), 32.5 (C(2)), 31.7 (C(7)), 27.2 (C(6)), 23.1, 21.1 (C(4), C(5)), 20.6 (C(3)), 14.3 (CH₂<u>CH</u>₃), 0.67 (Si(CH₃)₃). TLC (hexane/EtOAc 9:1): R_f = 0.44. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 37.4 min; β-CD, 0.6 bar H₂, 80 °C, 0.5 °C/min, t_R = 67.0/67.8 (1S, 6R, 7S/1R, 6S, 7R).

trans-tert-Butylester 11 (R = tert-Bu). IR: 2950 s, 1725 s, 1448 m, 1411 m, 1392 m, 1367 m, 1252 s, 1212 s, 1147 s, 1111 s, 990 m, 951 w, 877 s, 842 s. ¹H-NMR: 2.28-2.12 (m, 1H, H_AC(2)), 1.95-1.62 (m, 4H, H_BC(2), HC(7), HC(6), H_AC(5)), 1.53-1.27 (m with s, 14H, C(CH₃)₃, H₂C(3), H₂C(4), H_BC(5)), 0.13 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 169.1 (C=O), 79.6 (<u>C</u>(CH₃)₃), 59.5 (C(1)), 31.7 (C(7)), 29.0 (C(2)), 27.9 (C(6)), 24.6 (C(<u>CH₃</u>)₃), 21.0, 20.6, 18.4 (C(3), C(4), C(5)), 0.78 (Si(CH₃)₃). MS (EI): 284 (2), 229 (15), 228 (85), 213 (13), 212 (8), 211 (32), 210 (67), 184 (12), 183 (64), 182 (34), 169 (20), 168 (38), 155 (8), 139 (8), 138 (51),

137 (9), 121 (12), 110 (9), 75 (30), 73 (100), 57 (27), 45 (15), 41 (14). TLC (hexane/EtOAc 9:1): $R_f = 0.62$. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, $t_R = 37.4$ min; β-CD, 0.6 bar H₂, 80 °C, 0.5 °C/min, $t_R = 58.7$ min (no separation of enantiomers).

cis-tert-Butylester 10 (R = tert-Bu). ¹H-NMR: 2.20-1.80 (m, 4H, H_AC(2), HC(7), HC(6), H_AC(5)), 1.60-1.20 (m with s, 15H, H_BC(2), C(CH₃)₃, H₂C(3), H₂C(4), H_BC(5)), 0.07 (s, 9H, Si(CH₃)₃). ¹³C-NMR: 164.1 (C=O), 81.3 (C(CH₃)₃), 62.7 (C(1)), 32.8 (C(7)), 32.5 (C(2)), 27.7 (C(6)), 26.3 (C(<u>CH₃</u>)₃), 23.1, 21.2, 20.7 (C(3), C(4), C(5)), 0.75 (Si(CH₃)₃).TLC (hexane/EtOAc 9:1): R_f = 0.51. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 32.8 min; β -CD, 0.60 bar H₂, 80 °C, 0.5 °C/min, t_R = 67.0/67.8 min (1S, 6R, 7S/1R, 6S, 7R).

Methyl 1-(triisopropylsilyloxy)bicyclo[3.1.0]heptane-7-carboxylates 15 and 16. A mixture of [Cu(OTf)•(C₆H₆)_{0,5}] (34.4 mg, 0.137 mmol) and ligand 2 (66.8 mg, 0.157 mmol, 1.1 eq.) in 11 ml of $Cl(CH_2)$, Cl was stirred for 3.5 h. The solution was filtered using a micro filter (pore diameter 0.2 μ m) in an argon atmosphere and transferred to another flask. A solution of 1-(triisopropylsilyloxy)cyclohexene (1.39 g, 5.5 mmol) and 2,2,6,6-tetramethylpiperidine (23 µl, 2 mol%) in 20 ml of 1,2-dichloroethane was added. Using a syringe pump, a solution of methyl diazoacetate (2.50 g, 25.0 mmol, 4.5 eq.) in 7.5 ml of 1,2dichloroethane was added at 23 °C over a period of 2.5 h. To start the reaction it was sometimes necessary to heat the mixture to 60 °C for a short time until N,-evolution occurred. After completion of the addition the reaction mixture was allowed to stir for an additional 12 h. The solvent was removed in vacuo, and the resulting brownish oil was rapidly flushed through florisil[™] (1.5x7 cm, hexane/Et₂O 90:10), yielding 2.1 g of a colorless oil. The cis/trans-isomers were separated by MPLC (4x20 cm, Silica 100 Sichroprep Merck, hexane/Et₂O 99:1, flow 30 ml/min) giving 0.28 g of the pure cis- and 0.68 g of the pure trans-isomer (50% total yield). trans-Methylester 16. $[\alpha]_{D} = +52.1$ (c = 0.665, CHCl₃, at 81% ee). IR: 2944 s, 2867 s, 1733 s, 1464 m, 1447 m, 1436 m, 1407 m, 1360 m, 1206 s, 1171 s, 1154 s, 1114 s, 1086 m, 997 m, 883 s, 865 m, 803 w. ¹H-NMR: 3.66 (s, 3H, OCH₃), 2.30-2.17 (m, 1H, H_AC(2)), 2.01-1.83 (m, 3H, HC(6), HC(7), H_BC(2)), 1.74-1.61 (m, 2H, H₂C(3)), 1.53-1.34 (m, 4H, H₂C(5), H₂C(4)), 1.07-0.97 (m, 21H, OSiⁱPr₃). ¹³C-NMR: 170.6 $(C = O), 60.6 (C(1)), 50.8 (OCH_3), 31.5 (C(7)), 28.8 (C(2)), 26.7 (C(6)), 21.1 (C(5)), 20.4 (C(4)), 18.6 (C(3)), 20.4 (C(4)), 18.6 (C(3)), 20.4 (C(4)), 20.4 ($ 17.7 (Si(CH(<u>CH</u>₃)₂), 12.8 (Si(<u>CH</u>(CH₃)₂). MS: 326 (1, M⁺), 295 (4), 284 (21), 283 (100), 145 (36), 117 (18), 115 (12), 114 (12), 103 (8), 89 (9), 87 (9), 75 (17), 73 (13), 59 (22). TLC (hexane/EtOAc 9:1): R_f = 0.62. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 77.5 min. HPLC: Chiralcel OD-H, n-heptane/2-propanol $(99.9:0.1), t_{R} = 10.6/11.2 \min(1S, 6R, 7S/1R, 6S, 7R).$

cis-Methylester **15**. $[\alpha]_D = + 28.1 (c = 0.95, CHCl_3, at 86\% ee). ¹H-NMR: 3.64 (s, 3H, OCH_3), 2.22-2.15 (m, 2H, H_AC(2), HC(7)), 2.02-1.87 (m, 3H, HC(6), H_AC(5), H_BC(2)), 1.52-1.43 (m, 3H, H₂C(3), H_BC(5)), 1.24-1.19 (m, 2H, H₂C(4)), 1.05-0.98 (m, 21H, OSi[†]Pr₃). ¹³C-NMR: 170.4 (C=O), 63.1 (C(1)), 51.1 (OCH₃), 32.4 (C(2)), 32.0 (C(7)), 27.4 (C(6)), 23.2 (C(5)), 21.2 (C(4)), 20.6 (C(3)), 17.7 (CH₃), 12.8 (SiCH). TLC (hexane/EtOAc 9:1): R_f = 0.54. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 83.9 min. HPLC: Chiralcel OD-H, n-heptane/2-propanol (99.9:0.1), t_R = 11.5/16.7 min (1R, 6S, 7S/1S, 6R, 7R).$

Rearrangement product. Methyl [2-(trimethylsilyloxy)cyclopenten-1-yl]acetate. ¹H-NMR: 3.66 (s, 3H, OCH₃), 3.04 (s, 2H, CH₂), 2.34-2.26 (m, 4H, C(3), C(5)), 1.86-1.81 (m, 2H, C(4)), 0.18 (s, 9H, OSi(CH₃)₃). ¹³C-NMR: 172.3 (C=O), 149.6 (C(1)), 109.5 (C(2)), 51.5 (OCH₃), 33.4, 32.2, 31.1 (C(5), C(3), C(2)), 19.9 (CH₂), 0.51 (Si(CH₃)₃). MS (EI): 228 (5, M⁺), 169 (67), 89 (16), 75 (13), 73 (100, Si(CH₃)₃), 68 (17), 45 (11). TLC (hexane/EtOAc 9:1): $R_f = 0.35$. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, $t_R = 32.6$ min; β-CD, 0.55 bar H₂, 80 °C, 0.2 °C/min, $t_R = 56.6$ min.

Ring cleavage. General procedure 1: To a solution of 8 (R = Me, 0.50 g, 2.19 mmol) in 20 ml of methanol were added four drops of anhydrous acetic acid. The mixture was heated to reflux and the reaction was monitored by TLC over a period of 1 h. After completion of reaction, the solvent was evaporated *in vacuo* and the residue purified by column chromatography (2x18 cm, hexane/EtOAc 85:15) or distillation in a

Kugelrohr apparatus. Average yield was 95%. *Methyl (2-oxocyclopentane)acetate* : see ref. 11. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, $t_R = 27.5$; β -CD, 0.6 bar H₂, 80 °C, 0.2 °C/min, $t_R = 49.6/51.0$ min (2S/2R).

General procedure 2: A solution of 15 (0.28 g, 0.86 mmol) was stirred in 5 ml of CH₂Cl₂ at -78 °C. HF-pyridine-complex (1.0 ml, 25 equiv.) was added using a syringe over a period of 2 min. Upon completion of the reaction (ca. 2-4 h at -78 °C, checked by TLC), the mixture was poured on an ice-cold column filled with silica gel (hexane/ethylacetate 7:3) and filtered rapidly through the column. The solvent was removed *i.v.* and the product purified as described above. Average yield was 90%. Methyl (2-oxocyclohexane)-acetate. (R)-17: $[\alpha]_D = + 21.7$ (CHCl₃, c = 0.87, at 75% ee); (S)-17: $[\alpha]_D = - 23.3$ (CHCl₃, c = 0.91, at 80% ee). IR: 1739 s, 2862 s, 1739 s, 1711 s, 1437 s, 1437 s, 1356 s, 1341 m, 1311 m, 1277 s, 1168 s, 1132 m, 1101 w, 1075 w, 1003 m, 962 w, 931 w, 886 w, 845 w, 818 w. ¹H-NMR: 3.64 (s, 3H, OMe), 2.91-2.68 (m, 2H, <u>H_ACCOOMe</u>, C(2)), 2.39-2.30 (m, 2H, H₂C(6)), 2.19-2.02 (m, 3H, <u>H_ACCOOMe</u>, H_AC(3), H_AC(5)), 1.92-1.27 (m, 4H, H_BC(3), H₂C(4), H_BC(5)). ¹³C-NMR: 210.6 (C=O Ketone), 172.7 (C=O Ester), 51.3 (OMe), 46.7 (CH), 41.4 (C(6)), 33.8 (<u>H₂CCOOMe</u>), 33.5 (C(3)), 27.4 (C(5)), 24.8 (C(4)). MS(EI): 170 (24, M⁺), 139 (51), 138 (100), 127 (16), 121 (11), 110 (23), 97 (40), 82 (12), 74 (32), 67 (21). TLC (hexane/EtOAc 9:1): R_f = 0.10. GC: OV 1701, 0.6 bar H₂, 90 °C, 1 °C/min, t_R = 27.6 min. HPLC: Chiracel OB-H, n-heptane/2-propanol (80:20), t_R = 15.5/17.1 min (2S/2R).

REFERENCES AND NOTES

- a) Doyle, M. P. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993, p. 63. b) Reißig, H.-U. Angew. Chem. 1996, 108, 1049; ibid. Int. Ed. 1996, 35, 971. c) Reißig, H.-U. In Stereoselective Synthesis of Organic Compounds / Methods of Organic Chemistry (Houben-Weyl); Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.; Thieme: Stuttgart, 1995; 4th Ed., Vol. E 21 c, p. 3179-3270. d) Singh, V. K.; DattaGupta, A.; Sekar, G. Synthesis 1997, 137.
- a) Fukuda, T.; Katsuki, T. Tetrahedron 1997, 53, 7201. b) Uozui, Y.; Kyota, H.; Kishi, E.; Kitayama, K.; Hayashi, T. Tetrahedron: Asymmetry 1996, 7, 1603. c) Park, S.-B.; Sakata, N.; Nishiyama, H. Chem Eur. J. 1996, 2, 303. d) Nishiyama, H.; Itoh, Y.; Sugawara, Y.; Matsumoto, H.; Aoki, K.; Itoh, K. Bull. Chem. Soc. Jpn. 1995, 68, 1247. e) Nishiyama, H.; Park, S.-B.; Itoh, K. Chem. Lett. 1995, 599. f) Gant, T. G.; Noe, M. C.; Corey, E. J. Tetrahedron Lett. 1995, 8745. g) Lowenthal, R. E.; Abiko, A.; Masamune, S. Tetrahedron Lett. 1990, 31, 6005; Lowenthal, R. E.; Masamune, S. ibid. 1991, 32, 7373. h) Aratani, T. Pure Appl. Chem. 1985, 57, 1839.
- a) Doyle, M. P.; Peterson, C. S., Zhou, Q.-L.; Nishiyama, H. Chem Commun. 1997, 211. b) Doyle, M.P.; Peterson, C. S., Parker, D. L. Angew. Chem. 1996, 108, 1439; ibid. Int. Ed. 1996, 35, 1334. c) Doyle, M. P.; Austin, R. E.; Bailey, A. S.; Dwyer, M. P.; Dyatkin, A. B.; Kalinin, A. V.; Kwan, M. M. Y.; Liras, S.; Oalmann, C. J.; Pieters, R. J.; Protopova, M. N.; Raab, C. E.; Roos, G. H. P.; Zhou, Q.-L.; Martin, S. F. J. Am. Chem. Soc. 1995, 117, 5763. d) Martin, S. F.; Spaller, M. R.; Liras, S.; Hartmann, B. J. Am. Chem. Soc. 1994, 116, 4493. e) Doyle, M. P.; Pieters, R. J.; Martin, S. J.; Austin, R. E.; Oalmann, C. J.; Müller, P. J. Am. Chem. Soc. 1991, 113, 1423.
- a) Fritschi, H.; Leutenegger, U; Pfaltz, A. Helv. Chim. Acta 1988, 71, 1553. b) Fritschi, H.; Leutenegger, U; Siegmann, K; Pfaltz, A.; Keller, W.; Kratky, C. Helv. Chim. Acta 1988, 71, 1541. c) Leutenegger, U.; Umbricht, G.; Fahrni, C.; von Matt, P.; Pfaltz, A. Tetrahedron 1992, 48, 2143. d) Müller, D; Umbricht, G.; Weber, B; Pfaltz, A. Helv. Chim. Acta 1991, 74, 232. e) Pfaltz, A. Acc. Chem. Res. 1993, 26, 339.
- a) Evans, D. A.; Woerpel, K. A.; Scott, M. J. Angew. Chem. 1992, 104, 439; *ibid. Int. Ed.* 1992, 31, 430. b) Evans, D. A.; Woerpel, K. A.; Hinman, M. M. J. Am. Chem. Soc. 1991, 113, 726.
- a) Schumacher, R.; Dammast, F.; Reißig, H.-U. Chem. Eur. J. 1997, 3, 614. b) Schumacher, R.; Reißig, H.-U. Liebigs Ann./Recueil 1997, 521. c) Dammast, F.; Reißig, H.-U. Chem. Ber. 1993, 126,

2727. d) Kunz, T.; Reißig, H.-U. Tetrahedron Lett. 1989, 30, 2079. e) Dammast, F., Reißig, H.-U. Chem. Ber. 1993, 126, 2449.

- 7. Witte, H.; Seeliger, W. Liebigs Ann. Chem. 1974, 996.
- 8. a) Umbricht, G. Synthese chiraler Stickstoffliganden und deren Anwendung in der enantioselektiven Katalyse, Dissertation, University of Basel, 1993.
- a) Davies, I. W.; Senanayake, C. H.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1996, 37, 813. b) Ghosh, A., K.; Mathivanan, P.; Capiello, J. Tetrahedron Lett. 1996, 37, 3815.
- 10. In addition to ligand 7, various differently substituted derivatives have been synthesized and tested in the cyclopropanation of styrene with ethyl diazoacetate. The bis(*tert*-butyl) derivative 7 proved to be the most efficient ligand in this series (72% ee for ethyl cis-2-phenylcyclopropane-1-carboxylate and 60% ee for the trans isomer, cis:trans = 37:63, total yield 73%). David Miller (postdoctoral fellow 1996-97); Ebinger A.; Pfaltz, A., unpublished work. See: Ebinger, A. Dissertation, University of Basel, 1998. Lee and coworkers have recently reported the same type of ligands and their use in the enantioselective hydrosilylation of acetophenone: Lee, S.; Lim, C. W.; Song, C. E.; Kim, I. O; Jun, C.-H. Tetrahedron: Asymmetry 1997, 8, 2927.
- 11. Partridge, J. J.; Chadha, N. K.; Uskovicic', J. Am. Chem. Soc. 1973, 95, 7171.
- 12. a) Koul, S.; Crout, D. H. G.; Errington, W.; Tax, J. J. Chem. Soc., Perkin Trans. 1 1995, 2969. b) Dumas, F.; Dángelo, J. Tetrahedron: Asymmetry 1990, 1, 167.
- 13. Searle, N. E. Org. Synth. 1963, Coll Vol. IV, 424.
- a) Regitz, M.; Hocker, J.; Liedhegener, A. Org. Synth. 1973, Coll Vol. V, 179. b) Regitz, M. Synthesis 1972, 351.
- 15. Giannis, K.; Sandhoff, K. Angew. Chem. 1989, 101, 220; ibid. Int. Ed. 1989, 28, 218.
- 16. Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455.
- 17. Bloomfield, J. J. Org. Chem. 1961, 26, 4112.