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ABSTRACT 

 

A series of 1,2,5-oxadiazoles was synthesized as new potential antiproliferative agents. The in vitro 

cytotoxic activity evaluation of title compounds through MTT-assay revealed that some of them 

showed significant activity against the HCT-116 cancer cell line. The field-based disparity analysis 

provided indications about the electrostatic, hydrophobic and shape features underlying the 

cytotoxicity, suggesting that increasing the negative electrostatic field on the heterocyclic core of 

the structure has positive effects on the activity. The structure-activity relationships (SAR) around a 

particular compound can be explained allowing for a structural rationale for the differences in 

activity. The SAR provided by this series of compounds can be exploited to carry out further lead 

optimization. 
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1,2,5-Oxadiazoles have received considerable attention in recent years from our research group due 

to the interesting results they disclosed as potential antitumor agents.
[1-5]

 On this respect, we 

explored their antiproliferative potential by synthesizing several compounds differently substituted 

at positions 3 and 4 of the heterocycle.
[1]

 Of note, the derivative bearing in 3 the amide function 

(MD77) emerged for its significant biological results,
[3]

 when submitted to a panel of 58 human 

tumor cell lines, derived from 9 cancer cell types (NCI, Bethesda, USA). The dose-response curves 

showed that it inhibited the growth of different cell lines (e.g. HCT-116, DU145, MDAMB-231) at 

low micromolar concentrations. Since MD77 showed a noteworthy cytotoxic effect on the HCT-

116 cell line, we aimed at deepening our understanding of the structural characteristics responsible 

for its antiproliferative properties. To address this issue, we designed and synthesized some 

compounds strictly related to MD77, performing iterative modifications in order to recognize hits 

inducing a similar phenotypic effect on HCT-116. As we previously assessed the role of the linker 

structure,
[1]

 we maintained the amidic linkage throughout this lead optimization. Firstly, we 

investigated the impact of the substituents by changing their electronic characteristics or their 

position, and retaining the 1,2,5-oxadiazole scaffold (compounds 1-24). Then, we explored the role 

of the heterocycle by its replacement with 1,3,4-oxadiazole isomer
[6]

 (25) or with other aromatic 

systems, e.g. isoxazole (26 and 27), imidazole (28), furan (29) and phenyl ring (30) (Figure 1).  

 

All compounds were submitted to molecular modeling studies by means of the innovative Activity 

Miner module as implemented in the Cresset Forge software 
[7]

 to provide comprehensive structure-

activity relationships (SAR). This methodology allows the assessment of a structure-activity 

landscape for a series of 3D aligned structures based on the ‘activity cliff’ concept.
[8]

 The local SAR 

information, obtained from individual compound pairs associated with activity cliffs across the 

series, was then summarized into a global model through the Activity Atlas methodology.
[9]

 This 

technique provides 3D visually interpretable maps that can be used to inform new molecule design. 

In support of the in silico methodology, compounds 5 and 8, having the two phenyl rings 

alternatively monosubstituted with the trifluoromethyl and chlorine moiety respectively, were 

selected for crystal structure determination. This analysis was carried out to verify if the two 

molecular skeletons shared a similar conformation, independently from the intermolecular 

interactions made by the phenyl substituents. Here, we present the synthesis and the 

characterization of these new compounds together with the evaluation of their cytotoxic activity. In 

addition, the activity cliffs between molecules are discussed, in order to derive a computational 

model useful for lead optimization. 

 

1. Materials and Methods  

1.1 Chemistry 

Reagents and solvents were purchased from Sigma-Aldrich and used without further purification. 

Some reactions involving air-sensitive reagents were performed under nitrogen atmosphere and 

anhydrous solvents were used when necessary. The Biotage Initiator microwave synthesizer was 

used. Reactions were monitored by thin layer chromatography analysis on aluminum-backed Silica 

Gel 60 plates (70-230 mesh, Merck), using an ultraviolet fluorescent lamp at 254 nm and 365 nm. 

Visualization was aided by opportune staining reagents. Purification of intermediates and final 

compounds was performed by flash chromatography using Geduran® Si 60 (40-63 µm, Merck). 

The melting points were determined in open capillary tubes on a Buchi Melting Point B540 

instrument. 
1
H and 

13
C NMR spectra were recorded in CDCl3, CD3OD, acetone-d6 or DMSO-d6 on 

a Variant 300 MHz Oxford instrument at 25° C. Chemical shifts are expressed as δ (ppm). 

Multiplicity is reported as s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), m 

(multiplet), dd (doublet of doublets), dt (doublet of triplets). The coupling constants (J-values) are 

given in Hertz (Hz). All spectroscopic data match the assigned structures (see Supporting 

Information). The mass spectrometry analyses were carried out on an LTQ Orbitrap XL mass 
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spectrometer (Thermo Fisher Scientific, Milan, Italy) equipped with a FinniganIonMax 

Electrospray interface. 

1.1.1. General procedures for the synthesis of 4 -phenyl-1,2,5-oxadiazol-3-amines 

(31a-g) 

Procedure a. A one-pot reaction 
[1]

 on ethyl benzoylacetate afforded 4-phenyl-1,2,5-oxadiazol-3-

amine (31a). 

Procedure b. The key intermediates 31b-g were obtained as previously reported 
[3]

 starting from 

the appropriate benzaldehyde. 

1.1.1.1. 4-phenyl-1,2,5-oxadiazol-3-amine (31a).  Procedure a: yield 34 % as white solid (m.p. 

99-100 °C). 
1
H NMR (300 MHz, CDCl3): δ 7.70-7.81 (m, 2H, ArH), 7.51-7.59 (m, 3H, ArH), 4.20 

(br s, 2H, NH2 exchanged with D2O) ppm. 
13

C NMR (75 MHz, CDCl3): δ 154.30, 146.94, 130.58, 

129.42, 127.57, 125.49 ppm. 

1.1.1.2. 4-(2-chlorophenyl)-1,2,5-oxadiazol-3-amine (31b). Procedure b: yield 60 % (starting 

from 15 mmol of 2-chlorobenzaldehyde, 9 mmol of 31b were obtained) as light yellow solid (m.p. 

59-60 °C). 
1
H NMR (300 MHz, CDCl3): δ 7.33-7.57 (m, 4H, ArH), 4.22 (br s, 2H, NH2 exchanged 

with D2O) ppm. 
13

C NMR (75 MHz, CDCl3): δ 154.99, 146.46, 133.48, 132.29, 132.22, 130.54, 

127.77, 124.78 ppm. 

1.1.1.3. 4-(3-chlorophenyl)-1,2,5-oxadiazol-3-amine (31c). Procedure b: yield 41 % (starting 

from 15 mmol of 3-chlorobenzaldehyde, 6.15 mmol of 31c were obtained) as light yellow solid 

(m.p. 132.6-132.9 °C). 
1
H NMR (300 MHz, CDCl3): δ 7.74 (t, J = 1.6 Hz, 1H, ArH), 7.63 (dt, J1 = 

1.6 Hz, J2 = 6.9 Hz, 1H, ArH), 7.45-7.54 (m, 2H, ArH), 4.22 (br s, 2H, NH2 exchanged with D2O) 

ppm. 
13

C NMR (75 MHz, acetone-d6): δ 155.41, 146.24, 134.74, 131.12, 130.44, 128.36, 127.74, 

126.55 ppm. 

1.1.1.4. 4-(4-chlorophenyl)-1,2,5-oxadiazol-3-amine (31d). Procedure b: yield 19 % (starting 

from 15 mmol of 4-chlorobenzaldehyde, 2.85 mmol of 31d were obtained) as white solid (m.p. 

140.3-143.8 °C). 
1
H NMR (300 MHz, CDCl3): δ 7.69 (d, J = 8.1 Hz, 2H, ArH), 7.52 (d, J = 8.1 Hz, 

2H, ArH), 4.21 (br s, 2H, NH2 exchanged with D2O) ppm. 
13

C NMR (75 MHz, acetone-d6): δ 

155.10, 146.20, 135.77, 129.44, 129.31, 124.95 ppm. 

1.1.1.5. 4-(4-trifluoromethylphenyl)-1,2,5-oxadiazol-3-amine (31e). Procedure b: yield 25 % 

(starting from 15 mmol of 4-trifluoromethylbenzaldehyde, 3.75 mmol of 31e were obtained) as light 

brown solid (m.p. 107.2-109.3 °C). 
1
H NMR (300 MHz, acetone-d6): δ 8.04 (d, J = 8.7 Hz, 2H, 

ArH), 7.91 (d, J = 8.7 Hz, 2H, ArH), 5.74 (s, 2H, NH2 exchanged with D2O) ppm. 
13

C NMR (75 

MHz, acetone-d6): δ 155.27, 146.11, 131. 53, 130.18, 128.58, 125.97 (q, J = 2.9 Hz), 122.28 ppm. 
19

F NMR (282 MHz, acetone-d6): δ 63.47 (s, CF3) ppm. 

1.1.1.6. 4-(4-benzyloxyphenyl)-1,2,5-oxadiazol-3-amine (31f). Procedure b: yield 21 % 

(starting from 15 mmol of 4-benzozyloxoxybenzaldehyde, 5.91 mmol of 31f were obtained) as 

white solid (m.p. 144.5-145.5 °C). 
1
H NMR (300 MHz, CDCl3): δ 7.66 (d, J = 8.8 Hz, 2H, ArH), 

7.32-7.48 (m, 5H, ArH), 7.11 (d, J = 8.8 Hz, 2H, ArH), 5.14 (s, 2H, CH2), 4.19 (br s, 2H, NH2 

exchanged with D2O) ppm. 
13

C NMR (75 MHz, CDCl3): δ 160.67, 154.21, 146.79, 136.49, 129.31, 

128.95, 128.47, 127.69, 118.24, 116.01, 70.37 ppm. 

1.1.1.7. 4-(4-nitrophenyl)-1,2,5-oxadiazol-3-amine (31g). Procedure b: yield 12 % (starting 

from 15 mmol of 4-nitrobenzaldehyde, 1.80 mmol of 31g were obtained) as brown-red solid (m.p. 

135.4-137.6 °C). 
1
H NMR (300 MHz, CDCl3): δ 8.40 (d, J = 8.9 Hz, 2H, ArH), 7.98 (d, J = 8.9 Hz, 

2H, ArH), 4.27 (br s, 2H, NH2 exchanged with D2O) ppm. 
13

C NMR (75 MHz, acetone-d6): δ 

155.28, 148.87, 145.76, 132.43, 129.09, 124.09 ppm. 

1.1.2. Synthesis of 4-(4-chlorophenyl)-3-aminoisoxazole (35) 
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1.1.2.1. Synthesis of ethyl 4-(4-chlorophenyl)isoxazole-3-carboxylate (32). Ethyl 5-amino-4-(4-

chlorophenyl)isoxazole-3-carboxylate (0.750 mmol) was dissolved in a mixture of acetic acid (1.5 

mL), H2O (1.5 mL) and THF (2 mL). NaNO2 (7.5 mmol) was slowly added and the reaction 

mixture was stirred at room temperature for 1 hour. After evaporating solvents, the residue was 

diluted with water and extracted with dichloromethane (3×2 mL). The collected organic layers were 

firstly washed with a saturated aqueous solution of sodium bicarbonate and then with water. The 

organic phase was dried over anhydrous Na2SO4, filtered and then concentrated under reduced 

pressure. The crude product was purified by flash chromatography (eluent: petroleum ether/ethyl 

acetate from 95:5 to 9:1) to afford compound 32. Yield 71 % as colorless oil. TLC: petroleum 

ether/ethyl acetate (95:5) - Rf: 0.26. 
1
H NMR (300 MHz, acetone-d6): δ 9.12 (s, 1H, ArH), 7.57 (d, J 

= 8.6 Hz, 2H, ArH), 7.46 (d, J = 8.6 Hz, 2H, ArH), 4.38 (q, J = 7.1 Hz, 2H, CH2), 1.30 (t, J = 7.1 

Hz, 3H, CH3) ppm. 

1.1.2.2. Synthesis of 4-(4-chorophenyl)isoxazole-3-carbohydrazide (33). NH2NH2 ∙ H2O (1.596 

mmol) was added portion-wise at 0 °C to a stirred solution of intermediate 32 (0.397 mmol) in 

ethanol (1.3 mL). The reaction mixture was warmed to 40 °C for 90 minutes and then the solvent 

was evaporated under reduced pressure. The residue was extracted with water (6 mL) and ethyl 

acetate (3×3 mL) and the organic layers were collected, dried over anhydrous Na2SO4, filtered and 

concentrated under vacuum. The intermediate 33 was used in the next step without any further 

purification. Yield 85 % as white foam. TLC: dichloromethane/methanol (95:5) - Rf: 0.45. 
1
H NMR 

(300 MHz, acetone-d6): δ 10.11 (br s, 1H, NH exchanged with D2O), 9.17 (s, 1H, ArH), 7.65 (d, J = 

8.6 Hz, 2H, ArH), 7.42 (d, J = 8.6 Hz, 2H, ArH), 3.02 (br s, 2H, NH2 exchanged with D2O) ppm. 

1.1.2.3. Synthesis of 4-(4-chorophenyl)isoxazole-3-carbonyl azide (34). Acyl hydrazine 33 

(0.420 mmol) was dissolved in a 1:1 mixture of acetone/10 % HCl (1.8 mL). After cooling at 0 °C, 

a solution of NaNO2 (0.63 mmol) in water (1.8 mL) was added dropwise. The mixture was stirred 

for 40 minutes at room temperature and then quenched by slowly adding water (1.80 mL). The 

resulting mixture was cooled and filtered obtaining compound 34 which was used without any 

further purification. Yield 86 % as white foam. TLC: cyclohexane/ethyl acetate (9:1) - Rf: 0.38. 
1
H 

NMR (300 MHz, acetone-d6): δ 9.20 (s, 1H, ArH), 7.61 (d, J = 8.6 Hz, 2H, ArH), 7.48 (d, J = 8.6 

Hz, 2H, ArH) ppm. 

1.1.2.4. Synthesis of 4-(4-chlorophenyl)-3-aminoisoxazole (35). Acyl azide 34 (0.403 mmol) 

was suspended in a mixture of water/acetic acid (1:1) (6.4 mL) and the reaction was refluxed for 1 

hour. Then the solvents were removed under vacuum and the residue was extracted with H2O and 

ethyl acetate (3×2 mL), dried with anhydrous Na2SO4 and concentrated under reduced pressure 

obtaining intermediate 35. Quantitative yield as red foam. TLC: cyclohexane/ethyl acetate (7:3) - 

Rf: 0.25. 
1
H NMR (300 MHz, acetone-d6): δ 8.58 (s, 1H, ArH), 7.57 (d, J = 8.5 Hz, 2H, ArH), 7.46 

(d, J = 8.5 Hz, 2H, ArH), 5.10 (br s, 2H, NH2 exchanged with D2O) ppm. MS (ESI) m/z 194.9 [M + 

H]
+
. 

1.1.3. Synthesis of 3-(4-chlorophenyl)-4-aminoisoxazole (41) 

1.1.3.1. Synthesis of 4-chlorobenzoylchloride oxime (36). α-Chlorobenzaldoxime 36, an 

intermediate in the synthesis of compound 31d, was prepared according to literature procedure
[3]

: 

yield 87 % (starting from 10 mmol of 4-chlorobenzaldehyde, 8.7 mmol of 36 were obtained) as 

light-yellow solid (m.p. 48-49 °C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.60. 
1
H NMR (300 

MHz, CDCl3): δ 7.74 (d, J = 8.7 Hz, 2H), 7.32 (d, J = 8.7 Hz, 2H), 2.88 (s, 1H, OH, exchanged with 

D2O) ppm. 
13

C NMR (75 MHz, acetone-d6): δ 135.80, 135.71, 131.87, 128.66, 128.31 ppm. 

1.1.3.2. Synthesis of ethyl (E)-3-pyrrolidin-1-yl acrylate (37). A solution of pyrrolidine (14.06 

mmol) in toluene (2.4 mL) was added dropwise over 10 minutes to a solution of ethyl propiolate 

(14.06 mmol) in toluene (9.7 mL). The resulting mixture was stirred at room temperature for 16 

hours and then the solvent was evaporated under reduced pressure. The residue was diluted with 

water (9 mL) and extracted with ethyl acetate (3×3 mL). The collected organic layers were dried 
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over Na2SO4 and concentrated in vacuo to give pure compound 37. Quantitative yield as orange oil. 

TLC: cyclohexane/ethyl acetate (9:1) - Rf: 0.11. 
1
H NMR (300 MHz, CDCl3): δ 7.65 (d, J = 12.9 

Hz, 1H, CH), 4.48 (d, J = 12.9 Hz, 1H, CH), 4.13 (q, J = 7.1 Hz, 2H, CH2), 3.27 (br s, 4H, CH2), 

1.93 (br s, 4H, CH2), 1.26 (t, J = 7.1, 3H, CH3) ppm. 

1.1.3.3. Synthesis of ethyl 3-(4-chlorophenyl)isoxazole-4-carboxylate (38). To a stirred solution 

of intermediate 36 (6.74 mmol) in anhydrous diethyl ether (13.4 mL) and triethylamine (1.11 mL), a 

solution of compound 37 (6.74 mmol) in anhydrous diethyl ether was dripped at 0 °C and then the 

resulting mixture was stirred at room temperature for 18 hours under nitrogen atmosphere. The 

orange suspension was partitioned between water (8 mL) and diethyl ether (6 mL) and the aqueous 

phase was extracted with further diethyl ether (2×4 mL). The organic layers were combined, 

washed with 1M HCl (4 mL), dried over anhydrous Na2SO4, filtered and concentrated under 

reduced pressure. The crude intermediate was purified by flash chromatography on silica gel 

(eluent: cyclohexane/ethyl acetate 95:5) to afford intermediate 38. Yield 74 % as colorless oil. TLC: 

cyclohexane/ethyl acetate (9:1) - Rf: 0.37. 
1
H NMR (300 MHz, CDCl3): δ 8.96 (s, 1H, ArH), 7.70 

(d, J = 8.7 Hz, 2H, ArH), 7.36 (d, J = 8.7 Hz, 2H, ArH), 4.22 (q, J = 7.5 Hz, 2H, CH2), 1.24 (t, J = 

7.5 Hz, 3H, CH3) ppm. 

1.1.3.4. Synthesis of 3-(4-chlorophenyl)isoxazole-4-carboxilic acid (39). A stirred solution of 

ester 38 (5.01 mmol) in acetic acid (21 mL) was treated with 6N HCl (35 mL) at reflux for 6 hours. 

After cooling, the reaction mixture was extracted with ethyl acetate (3×10 mL). The concentrated 

organic layer was treated with sat. NaHCO3 (10 mL) and the aqueous solution was separated, 

cooled and acidified with 6N HCl. Intermediate 39 was extracted with ethyl acetate (3x10 mL) and 

the combined organic phases were dried over anhydrous Na2SO4, filtered and concentrated in 

vacuo. Acid 39 was used in the next step without any further purification. Yield 96 % as white 

foam. TLC: dichloromethane/methanol/acetic acid (98:2:0.02) - Rf: 0.25. 
1
H NMR (300 MHz, 

CDCl3): δ 9.12 (s, 1H, ArH), 7.69 (d, J = 9 Hz, 2H, ArH), 7.49 (d, J = 9 Hz, 2H, ArH) ppm. 

1.1.3.5. Synthesis of [3-(4-chlorophenyl)isoxazol-4-yl]-carbamic acid tert-butyl ester (40). A 

mixture of intermediate 39 (2.94 mmol), diphenylphosphorylazide (2.94 mmol) and triethylamine 

(0.41 mL) in dry tert-butanol was refluxed for 16 hours under nitrogen atmosphere. Compound 40 

was extracted with ethyl acetate (3×4 mL). The combined organic phases were washed with 1M 

HCl and brine, then dried over anhydrous Na2SO4, filtered and concentrated under reduced 

pressure. The crude was purified by flash chromatography on silica gel (eluent: cyclohexane/ethyl 

acetate from 8:2 to 7:3) to afford intermediate 40. Yield 53 % as brown solid (m.p. 160.5-163.2 °C). 

TLC: cyclohexane/ethyl acetate (7:3) - Rf: 0.28. 
1
H NMR (300 MHz, CDCl3): δ 8.85 (s, 1H, ArH), 

7.52 (d, J = 8.5 Hz, 2H, ArH), 7.45 (d, J = 8.6 Hz, 2H, ArH), 6.26 (br s, 1H, NH exchanged with 

D2O), 1.46 (s, 9H, C(CH3)3) ppm. 
13

C NMR (75 MHz, CDCl3): δ 152.62, 148.62, 136.27, 129.59, 

129.18, 126.14, 118.21, 81.71, 28.13 ppm. 

1.1.3.6. Synthesis of 3-(4-chlorophenyl)-4-aminoisoxazole (41). To a stirred solution of 

compound 40 (1.076 mmol) in anhydrous dichloromethane (0.5 mL), trifluoracetic acid (0.5 mL) 

was slowly added and the reaction mixture was stirred at room temperature for 16 hours. The 

resulting mixture was extracted with water (3×2 mL) and the collected acidic aqueous solutions 

were basified with a 4N NaOH. Amine 41 was extracted with ethyl acetate (3×4 mL) and the 

organic layers were combined, dried over anhydrous Na2SO4, filtered and concentrated in vacuo. 

The crude was purified by flash chromatography on silica gel (eluent: cyclohexane/ethyl acetate 

7:3) to provide compound 41. Yield 84 % as yellow foam. TLC: cyclohexane/ethyl acetate (7:3) - 

Rf: 0.25. 
1
H NMR (300 MHz, acetone-d6): δ 8.30 (s, 1H, ArH), 7.89 (d, J = 8.5 Hz, 2H, ArH), 7.53 

(d, J = 8.5 Hz, 2H, ArH), 3.99 (s, 2H, NH2 exchanged with D2O) ppm. 
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1.1.4. Synthesis of 5-(4-chlorophenyl)-1-methyl-4-amino-imidazole (43) 

1.1.4.1. Synthesis of 5-(4-chlorophenyl)-1-methyl-4-nitro-imidazole (42). A mixture of 5-

chloro-1-methyl-4-nitroimidazole (6.19 mmol), 4-chlorophenylboronic acid (6.19 mmol), 

Pd(PPh3)2Cl2 (0.19 mmol), K2CO3 (15.48 mmol) and TBAB (6.19 mmol) in water (10 mL) was 

stirred at 80 °C for 16 hours, under nitrogen atmosphere. The resulting precipitate was filtered to 

obtain pure intermediate 42. Yield 92 % as yellow foam. TLC: dichloromethane/methanol (95:5) - 

Rf: 0.50. 
1
H NMR (300 MHz, CDCl3): δ 7.48-7.55 (m, 3H, ArH), 7.34 (d, J = 8.5 Hz, 2H, ArH), 

3.54 (s, 3H, CH3) ppm. MS (ESI) m/z 238.4 [M + H]
+
. 

1.1.4.2. Synthesis of 5-(4-chlorophenyl)-1-methyl-4-amino-imidazole (43). Compound 42 (0.42 

mmol) was dissolved in dichloromethane/methanol (9:1, 3 mL) and Pd(OH)2 (0.07 mmol) was 

added. The mixture was stirred under hydrogen atmosphere at room temperature overnight and then 

filtered on Celite®. The organic solvents were removed under vacuum to give the pure amine 43. 

Yield 91 % as brownish oil. TLC: dichloromethane/methanol (9:1) - Rf: 0.44. 
1
H NMR (300 MHz, 

CDCl3): δ 7.41 (d, J = 8.5 Hz, 2H, ArH), 7.27 (d, J = 8.5 Hz, 2H, ArH), 3.53 (s, 3H, CH3), 3.41 (br 

s, 2H, NH2 exchanged with D2O) ppm. MS (ESI) m/z 208.8 [M + H]
+
. 

1.1.5. Synthesis of ethyl 3-amino-4-(4-chlorophenyl)furan-2-carboxylate (45) 

1.1.5.1. Synthesis of 4-chlorophenyl-acrylonitrile sodium salt (44). Sodium (6.612 mmol) was 

suspended in dry ethanol (8 mL) and refluxed under nitrogen atmosphere. A solution of 4-

chlorophenylacetonitrile (3.306 mmol) and ethyl formate (4.98 mmol) in ethanol (2 mL) was added 

dropwise and the reaction mixture was stirred at reflux for 16 hours. After cooling, diethyl ether 

was added and the resulting precipitate was collected by filtration, washed with diethyl ether and 

dried to give 4-chlorophenylacrylonitrile as sodium salt (44). Yield 78 % as white solid. TLC: 

dichloromethane/methanol (95:5) - Rf: 0.51. 
1
H NMR (300 MHz, DMSO-d6): δ 7.73 (d, J = 8.8 Hz, 

2H, ArH), 7.06 (d, J = 8.8 Hz, 2H, ArH), 7.04 (s, 1H, CH) ppm. 

1.1.5.2. Synthesis of ethyl 3-amino-4-(4-chlorophenyl)furan-2-carboxylate (45). Intermediate 

44 (2.48 mmol) was dissolved in dry DMF (3.97 mL) and diethyl chloromalonate (2.73 mmol) was 

added. The reaction mixture was stirred for 5 hours at room temperature under nitrogen atmosphere 

and then the solvent was removed under reduced pressure. The obtained orange solid was diluted 

with water (10 mL) and extracted with dichloromethane (3×5 mL). The organic layer was dried 

over anhydrous Na2SO4, filtered and evaporated under vacuum. The resulting intermediate (diethyl 

2-((2-(4-chlorophenyl)-2-cyanovinyl)oxy)malonate) was dissolved in dry ethanol (2.6 mL) and 1,5-

diazabicyclo-[4.3.0]-non-5-ene (2.73 mmol) was added under nitrogen atmosphere. After refluxing 

for 16 hours, the solution was concentrated and the residue was diluted with water (5 mL) and 

extracted with dichloromethane (3×3 mL). The organic layers were dried over anhydrous Na2SO4, 

filtered and concentrated under reduced pressure. The crude was purified by silica gel 

chromatography (eluent: cyclohexane/ethyl acetate 9:1) to obtain compound 45. Yield 41 % as 

brownish foam. TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.51. 
1
H NMR (300MHz, DMSO-d6): δ 

7.87 (s, 1H, ArH), 7.41-7.56 (m, 4H, ArH), 5.54 (br s, 2H, NH2 exchanged with D2O), 4.22 (q, J = 

7.1 Hz, 2H, CH2), 1.25 (t, J = 7.1 Hz, 3H, CH3) ppm. 
13

C NMR (75 MHz, CDCl3): δ 160.35, 

142.29, 141.35, 133.85, 129.42, 128.82, 128.46, 119.44, 60.13, 14.56 ppm. 

1.1.6. Synthesis of 4’-chloro-[1,1-biphenyl] -2-amine (48) 

In a two-necked flask, 2-iodoaniline (1.14 mmol) was dissolved in dry toluene/ethanol (20:1, 20 

mL) under nitrogen atmosphere. Then 4-chlorophenylboronic acid (1.256 mmol), 2M Na2CO3 (3.43 

mmol) and Pd(PPh3)4 (0.923 mmol) were added. The mixture was stirred at 70 °C for 16 hours. 

After solvent evaporation, water was added (4 mL) and the residue was extracted with ethyl acetate 

(2×2 mL). The organic layers were collected, dried over anhydrous Na2SO4, filtered and 

concentrated under vacuum. The crude was purified by flash chromatography on silica gel (eluent: 

cyclohexane/ethyl acetate, 9:1) to afford compound 48. Yield 81 % as orange oil. TLC: 
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cyclohexane/ethyl acetate (9:1) - Rf: 0.27. 
1
H NMR (300 MHz, CDCl3): δ 7.34-7.46 (m, 4H, ArH), 

7.06-7.21 (m, 2H, ArH), 6.72-6.89 (m, 2H, ArH), 3.75 (br s, 2H, NH2 exchanged with D2O) ppm. 

1.1.7. General procedures for the synthesis of N -aryl amides (1-13,16,18,20,22,24-

30) 

Procedure a. In a microwave vessel, to a solution of the suitable 4-phenyl-1,2,5-oxadiazol-3-

amine (0.255 mmol) and 4-dimethylaminopyridine (0.306 mmol) in dry dichloroethane (1.5 mL), 

the opportune benzoyl chloride (0.306 mmol) was added at room temperature under nitrogen 

atmosphere. The reaction mixture was irradiated in a microwave synthesizer at 300 Watts and 120 

°C for 45 minutes. Upon completion, the solution was treated with water (3 mL) and extracted with 

dichloromethane (3×3 mL) and the collected organic phases were washed with 1N HCl (2 mL). The 

organic layer was dried over Na2SO4, filtered and evaporated under reduced pressure. The residue 

was purified by flash column chromatography. 

Procedure b. In a two-necked flame-dried flask under nitrogen atmosphere, the suspension of 60 

% NaH mineral oil (0.3 mmol) in dry DMF (3 mL) was cooled at 0 °C and the appropriate aryl 

amine (0.25 mmol) was added. The mixture was stirred for 30 minutes at 0 °C. Then, the suitable 

commercially available acyl chloride (0.3 mmol) was added dropwise and the mixture was stirred at 

60 °C for 12 hours. The reaction was quenched with water (3 mL), and DMF was removed under 

vacuum. The residue was extracted with ethyl acetate (3×2 mL); the collected organic layers were 

dried over Na2SO4 and evaporated under reduced pressure. The crude product was purified by 

column chromatography to obtain the desired adduct. 

Procedure c. In a two-necked flame-dried flask, the proper aryl amine (0.373 mmol) was 

dissolved in dry pyridine (0.54 mL) under nitrogen atmosphere and cooled at 0 °C. After 10 

minutes, the suitable acyl chloride (0.341 mmol) was dripped and the mixture was stirred at room 

temperature until completion. The solvent was concentrated under reduced pressure and the residue 

was diluted with water (4 mL) and extracted with ethyl acetate (3×2 mL). The organic layers were 

collected, dried over anhydrous Na2SO4, filtered and concentrated in vacuo. The pure 1,3,4-

oxadiazol-2-yl-benzamide was isolated after flash chromatography. 

Procedure d. In a two-necked flame-dried flask, the opportune aryl amine (0.48 mmol) and 

triethylamine (0.96 mmol) were dissolved in dry dichloromethane (3 mL) under nitrogen 

atmosphere. The solution was cooled on an ice-bath and after 30 minutes the suitable acyl chloride 

(0.53 mmol) was added dropwise. The reaction was stirred for 90 minutes at different temperatures 

for each substrate. After cooling, the reaction was quenched with water (3 mL) and extracted with 

dichloromethane (2×3 mL). The collected organic layers were firstly washed with 1M HCl (2 mL) 

and then with brine (2 mL). The resulting solution was dried over anhydrous Na2SO4, filtered and 

concentrated under vacuum. The final benzamide was obtained as pure product by flash 

chromatography or precipitation as hydrochloride salt. 

Procedure e. In a microwave vial, the aryl amine (0.15 mmol) was dissolved in dry 

dichloromethane (4.29 mL) under nitrogen atmosphere. Then triethylamine (0.378 mmol) and 

benzoyl chloride (0.15 mmol) were added. The reaction mixture was irradiated at 300 Watts and at 

40 °C for 80 minutes in a microwave synthesizer. The crude was washed with 1M HCl, saturated 

bicarbonate solution and brine, dried over anhydrous Na2SO4 and concentrated under reduced 

pressure. The residue was purified by flash chromatography. 

1.1.7.1. 4-(trifluoromethyl)-N-(4-phenyl-1,2,5-oxadiazol-3-yl) benzamide (8). Starting 

compounds: 31a and 4-(trifluoromethyl)benzoyl chloride. Procedure a: yield 9 %. Procedure b: 

yield 34 %. White solid (m.p. 198-199 °C). TLC: cyclohexane/ethyl acetate (7:3) - Rf: 0.50. Eluent 

for chromatography: cyclohexane/ethyl acetate (7:3). 
1
H NMR (300 MHz, acetone-d6): δ 10.53 (br 

s, 1H, NH exchanged with D2O), 8.26 (d, J = 8.1 Hz, 2H, ArH), 7.92 (d, J = 8.1 Hz, 2H, ArH), 

7.83-7.86 (m, 2H, ArH), 7.50-7.54 (m, 3H, ArH) ppm. 
13

C NMR (75 MHz, CDCl3): δ 165.20, 
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151.59, 149.74, 136.25, 133.64, 133.21, 130.63, 129.04, 128.87, 127.51, 125.72 (q, J =3.7 Hz), 

122.11 ppm. 
19

F NMR (282 MHz, CDCl3): δ -63.58 (s, CF3) ppm. 

1.1.7.2. N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl)benzamide (5). Starting compounds: 31d and 

benzoyl chloride. Procedure a: yield 12 %. Procedure b: yield 32 %. Brown solid (m.p. 177.4-178.7 

°C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.28. Eluent for chromatography: cyclohexane/ethyl 

acetate (8:2). 
1
H NMR (300 MHz, CDCl3): δ 8.20 (br s, 1H, NH exchanged with D2O), 7.81 (d, J = 

7.6 Hz, 2H, ArH), 7.62-7.52 (m, 3H, ArH), 7.42-7.50 (m, 2H, ArH), 7.39 (d, J = 8.5 Hz, 2H, ArH) 

ppm. 
13

C NMR (75 MHz, acetone-d6): δ 166.49, 151.07, 150.34, 136.37, 133.06, 132.74, 129.45, 

129.42, 128.96, 128.27, 125.10 ppm. 

1.1.7.3. 4-chloro-N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl) benzamide (10). Starting 

compounds: 31d and 4-chlorobenzoyl chloride. Procedure a: yield 15 % as white solid (m.p. 155-

160 °C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.44. Eluent for chromatography: 

cyclohexane/ethyl acetate (8:2). 
1
H NMR (300 MHz, CDCl3): δ 8.07 (br s, 1H, NH exchanged with 

D2O), 7.81 (d, J = 8.2 Hz, 2H, ArH), 7.64 (d, J = 8.2 Hz, 2H, ArH), 7.51 (d, J = 8.7 Hz, 2H, ArH), 

7.46 (d, J = 8.7 Hz, 2H, ArH) ppm. 
13

C NMR (75 MHz, CDCl3): δ 166.69, 140.26, 139.97, 135.43, 

130.07, 129.59, 129.49, 129.02, 128.86, 128.79, 126.27 ppm. 

1.1.7.4. 4-chloro-N-(4-(4-trifluoromethylphenyl)-1,2,5-oxadiazol-3-yl)benzamide (12). Starting 

compounds: 31e and 4-chlorobenzoyl chloride. Procedure b: yield 8 % as yellow solid (m.p. 200-

201 °C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.42. Eluent for chromatography: 

cyclohexane/ethyl acetate (8:2). 
1
H NMR (300 MHz, CDCl3): δ 8.11 (br s, 1H, NH exchanged with 

D2O), 7.81-7.85 (m, 4H, ArH), 7.74 (d, J = 8.4 Hz, 2H, ArH), 7.51-7.54 (m, 2H, ArH) ppm. 
13

C 

NMR (75 MHz, CDCl3): δ 165.09, 149.15, 140.56, 132.69, 130.17, 129.71, 129.46, 129.17, 128.22, 

126.27 (q, J = 3.7 Hz), 125.64, 121.92 ppm. 
19

F NMR (282 MHz, CDCl3): δ -63.08 (s, CF3) ppm. 

1.1.7.5. N-(4-phenyl-1,2,5-oxadiazol-3-yl)benzamide (9). Starting compounds: 31a and benzoyl 

chloride. Procedure a: yield 13 % as white solid (m.p. 139-140 °C). TLC: cyclohexane/ethyl acetate 

(8:2) - Rf: 0.28. Eluent for chromatography: cyclohexane/ethyl acetate (from 9:1 to 6:4). 
1
H NMR 

(300 MHz, CDCl3): δ 8.00-8.22 (m, 4H, ArH), 7.56-7.66 (m, 2H, ArH), 7.39-7.53 (m, 4H, ArH) 

ppm. 
13

C NMR (75 MHz, CDCl3): δ 172.56, 133.82, 133.12, 130.76, 130.21, 129.34, 129.24, 

128.97, 128.47, 127.76, 127.57 ppm. 

1.1.7.6. N-(4-(2-chlorophenyl)-1,2,5-oxadiazol-3-yl)benzamide (6). Starting compounds: 31b and 

benzoyl chloride. Procedure b: yield 7 % as white solid (m.p. 101-104 °C). TLC: cyclohexane/ethyl 

acetate/dichloromethane (8:1:1) - Rf: 0.28. Eluent for chromatography: cyclohexane/ethyl acetate 

(from 9:1 to 6:4). 
1
H NMR (300 MHz, CDCl3): δ 8.23 (br s, 1H, NH exchanged with D2O), 7.78-

7.84 (m, 2H, ArH), 7.55-7.63 (m, 2H, ArH), 7.41-7.53 (m, 5H, ArH) ppm. 
13

C NMR (75 MHz, 

CDCl3): δ 156.98, 134.46, 133.80, 130.20, 129.91, 129.85, 129.33, 128.47, 128.05, 126.00 ppm. 

1.1.7.7. 4-(trifluoromethyl)-N-(4-(2-chlorophenyl)-1,2,5-oxadiazol-3-yl)benzamide (1). Starting 

compounds: 31b and 4-(trifluoromethyl)benzoyl chloride. Procedure b: yield 24 % as white solid 

(m.p. 122-123 °C). TLC: petroleum ether/ethyl acetate (9:1) - Rf: 0.21. Eluent for chromatography: 

petroleum ether/ethyl acetate (8:2). 
1
H NMR (300 MHz, CDCl3): δ 8.37 (br s, 1H, NH exchanged 

with D2O), 7.94 (d, J = 8.4 Hz, 2H, ArH), 7.76 (d, J = 8.1 Hz, 2H, ArH), 7.60-7.63 (m, 1H, ArH), 

7.42-7.52 (m, 3H, ArH) ppm. 
13

C NMR (75 MHz, CDCl3): δ 163.73, 149.33, 148.92, 135.60, 

135.10, 134.66, 132.94, 132.42, 132.18, 130.23, 128.33, 127.90, 126.33 (q, J = 3.7 Hz), 125.30 

ppm. 
19

F NMR (282 MHz, CDCl3): δ -63.83 (s, CF3) ppm. 

1.1.7.8. N-(4-(3-chlorophenyl)-1,2,5-oxadiazol-3-yl)-benzamide (7). Starting compounds: 31c and 

benzoyl chloride. Procedure b: yield 7 % as white solid (m.p. 119-121 °C). TLC: cyclohexane/ethyl 

acetate (8:2) - Rf: 0.20. Eluent for chromatography: cyclohexane/dichloromethane/ethyl acetate 

(8:1:1) and 1 % acetic acid. 
1
H NMR (300 MHz, CDCl3): δ 8.16 (br s, 1H, NH exchanged with 

D2O), 7.88 (d, J = 7.3 Hz, 2H, ArH), 7.74 (t, J = 1.6 Hz, 1H, ArH), 7.68-7.37 (m, 6H, ArH) ppm. 
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13
C NMR (75 MHz, CDCl3): δ 166.02, 149.42, 148.98, 135.16, 133.80, 133.27, 130.81, 130.41, 

130.17, 128.99, 128.48, 127.73, 125.50 ppm. 

1.1.7.9. 4-(trifluoromethyl)-N-(4-(3-chlorophenyl)-1,2,5-oxadiazol-3-yl)benzamide (2). Starting 

compounds: 31c and 4-(trifluoromethyl)benzoyl chloride. Procedure b: yield 32 % as white solid 

(m.p. 196-197 °C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.35. Eluent for chromatography: 

cyclohexane/ethyl acetate (75:25). 
1
H NMR (300 MHz, acetone-d6): δ 8.25 (d, J = 8.1 Hz, 2H, 

ArH), 7.94 (d, J = 8.4 Hz, 2H, ArH), 7.86 (s, 1H, ArH), 7.80 (d, J = 6.6 Hz, 1H, ArH), 7.52-7.62 

(m, 2H, ArH) ppm. 
13

C NMR (75 MHz, acetone-d6): δ 165.45, 150.76, 149.90, 136.41, 134.58, 

133.93, 133.49, 131.06, 130.80, 129.13, 128.06, 127.63, 126.35, 125.88 (q, J = 3.8 Hz) ppm. 
19

F 

NMR (282 MHz, acetone-d6): δ -63.43 (s, CF3) ppm. 

1.1.7.10. 2-(trifluoromethyl)-N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl)benzamide (3). Starting 

compounds: 31d and 2-(trifluoromethyl)benzoyl chloride. Procedure b: yield 56 % as light gray 

solid (m.p. 197-199 °C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.27. Eluent for 

chromatography: cyclohexane/ethyl acetate (8:2). 
1
H NMR (300 MHz, CD3OD): δ 7.67-7.85 (m, 

6H, ArH), 7.55 (d, J = 8.5 Hz, 2H, ArH) ppm. 
13

C NMR (75 MHz, CD3OD): δ 149.07, 136.79, 

132.38, 130.90, 129.67, 129.39, 129.14, 128.44, 127.69, 127.26, 126.65 (q, J = 5.1 Hz), 125.57, 

124.31, 121.96 ppm. 
19

F NMR (282 MHz, CD3OD): δ -60.30 (s, CF3) ppm. 

1.1.7.11. 3-(trifluoromethyl)-N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl)benzamide (4). Starting 

compounds: 31d and 3-(trifluoromethyl)benzoyl chloride. Procedure b: yield 60 % as light gray 

solid (m.p. 113-115 °C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.36. Eluent for 

chromatography: cyclohexane/ethyl acetate (8:2). 
1
H NMR (300 MHz, CDCl3): δ 8.54 (br s, 1H, 

NH exchanged with D2O), 8.14 (s, 1H, ArH), 8.06 (d, J = 7.9 Hz, 1H, ArH), 7.89 (d, J = 7.9 Hz, 

1H, ArH), 7.60-7.71 (m, 3H, ArH), 7.40-7.49 (m, 2H, ArH) ppm. 
13

C NMR (75 MHz, CDCl3): δ 

164.54, 149.88, 148.85, 137.44, 132.74, 132.25, 131.81, 131.07, 130.17, 130.08, 129.82, 129.03, 

124.96 (q, J = 3.7 Hz), 124.03 ppm. 
19

F NMR (282 MHz, CDCl3): δ -62.27 (s, CF3) ppm. 

1.1.7.12. 4-methoxy-N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl) benzamide (13). Starting 

compounds: 31d and 4-methoxybenzoyl chloride. Procedure b: yield 70 % as white solid (m.p. 161-

163 °C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.20. Eluent for chromatography: 

cyclohexane/dichloromethane/ethyl acetate (7:2:1). 
1
H NMR (300 MHz, acetone-d6): δ 10.23 (br s, 

1H, NH exchanged with D2O), 8.02 (d, J = 8.7 Hz, 2H, ArH), 7.83 (d, J = 8.4 Hz, 2H, ArH), 7.53 

(d, J = 8.4 Hz, 2H, ArH), 7.06 (d, J = 8.7 Hz, 2H, ArH), 3.89 (s, 3H, CH3) ppm. 
13

C NMR (75 

MHz, acetone-d6): δ 165.65, 163.46, 150.84, 150.28, 136.05, 130.11, 129.15, 129.13, 124.97, 

124.55, 113.91, 55.09 ppm. 

1.1.7.13. 4-nitro-N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl) benzamide (16). Starting 

compounds: 31d and 4-nitrobenzoyl chloride. Procedure b: yield 46 % as yellow solid (m.p. 230-

231 °C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.21. Eluent for chromatography: 

cyclohexane/ethyl acetate from (98:2) to (7:3). 
1
H NMR (300 MHz, acetone-d6): δ 10.79 (br s, NH, 

1H exchanged with D2O), 8.41 (d, J = 8.7 Hz, 2H, ArH), 8.30 (d, J = 8.7 Hz, 2H, ArH), 7.88 (d, J = 

8.4 Hz, 2H, ArH), 7.57 (d, J = 8.4 Hz, 2H, ArH) ppm. 
13

C NMR (75 MHz, acetone-d6): δ 164.87, 

150.85, 150.56, 149.79, 138.06, 136.37, 129.56, 129.31, 129.22, 124.74, 123.73 ppm. 

1.1.7.14. 4-cyano-N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl) benzamide (18). Starting 

compounds: 31d and 4-cyanobenzoyl chloride. Procedure b: yield 60 % as white solid (m.p. 212-

213 °C). TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.27. Eluent for chromatography: 

dichloromethane/cyclohexane (98:2). 
1
H NMR (300 MHz, acetone-d6): δ 10.64 (br s, NH, 1H 

exchanged with D2O), 8.21 (d, J = 9.0 Hz, 2H, ArH), 8.00 (d, J = 9.0 Hz, 2H, ArH), 7.86 (d, J = 7.8 

Hz, 2H, ArH), 7.56 (d, J = 7.8 Hz, 2H, ArH) ppm. 
13

C NMR (75 MHz, acetone-d6): δ 165.22, 

150.95, 149.87, 136.58, 136.46, 132.85, 129.52, 129.47, 129.12, 124.89, 117.87, 116.32 ppm. 
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1.1.7.15. 4-trifluoromethyl-N-(4-(4-trifluoromethylphenyl)-1,2,5-oxadiazol-3-yl)benzamide (11). 

Starting compounds: 31e and 4-(trifluoromethyl)benzoyl chloride. Procedure a: yield 6 % as off-

white solid (m.p. 211-212 °C). TLC: cyclohexane/ethyl acetate (7:3) - Rf: 0.60. Eluent for 

chromatography: cyclohexane/ dichloromethane (3:7). 
1
H NMR (300 MHz, CD3OD): δ 8.12 (d, J = 

8.4 Hz, 2H, ArH), 7.95 (d, J = 8.4 Hz, 2H, ArH), 7.86 (d, J = 8.1 Hz, 2H, ArH), 7.80 (d, J = 8.1 Hz, 

2H, ArH) ppm. 
13

C NMR (75 MHz, CDCl3): δ 169.85, 149.20, 142.35, 130.75, 128.65 (q, J = 3.6 

Hz), 128.27 (q, J = 3.6 Hz), 128.06, 126.32, 126.27, 126.22, 126.10, 125.91, 125.86 ppm. 
19

F NMR 

(282 MHz, CD3OD): δ -64.90 (s, CF3), -65.43 (s, CF3) ppm. 

1.1.7.16. 4-trifluoromethyl-N-(4-(4-nitrophenyl)-1,2,5-oxadiazol-3-yl)benzamide (22). Starting 

compounds: 31g and 4-(trifluoromethyl)benzoyl chloride. Procedure b: yield 23 % as yellow-white 

solid (m.p. 102-104 °C). TLC: cyclohexane/ ethyl acetate (8:2) - Rf: 0.37. Eluent for 

chromatography: cyclohexane/ethyl acetate (8:2). 
1
H NMR (300 MHz, CD3OD): δ 8.35 (d, J = 8.9 

Hz, 2H, ArH), 8.12 (d, J = 8.2 Hz, 2H, ArH), 8.00 (d, J = 8.9 Hz, 2H, ArH), 7.86 (d, J = 8.2 Hz, 2H, 

ArH). 
13

C NMR (75 MHz, CD3OD): δ 180.32, 166.46, 150.20, 149.92, 149.27, 135.98, 132.45, 

128.80, 128.70, 128.13, 125.70 (q, J = 3.7 Hz), 123.90 ppm. 
19

F NMR (282 MHz, CD3OD): δ -

65.10 (s, CF3) ppm. 

1.1.7.17. N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl)-butyramide (24). Starting compounds: 31d 

and n-butyryl chloride. Procedure b: yield 98 % as white solid (m.p. 139-140 °C). TLC: 

cyclohexane/ethyl acetate (8:2) - Rf: 0.26. Eluent for chromatography: 

cyclohexane/dichloromethane/ethyl acetate (4:5:1). 
1
H NMR (300 MHz, CDCl3): δ 7.53 (d, 2H, J = 

8.1 Hz, ArH), 7.42 (d, 2H, J = 8.1 Hz, ArH), 7.31 (br s, 1H, NH exchanged with D2O), 2.42 (t, 2H, 

J = 7.5 Hz, CH2), 1.61-1.73 (m, 2H, CH2), 0.93 (t, 3H, J = 7.4 Hz, CH3) ppm. 
13

C NMR (75 MHz, 

CDCl3): δ 172.17, 149.17, 148.68, 137.42, 129.81, 129.26, 123.81, 38.32, 18.60, 13.66 ppm. 

1.1.7.18. 4-trifluoromethyl-N-(4-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)benzamide (25). Starting 

compounds: 2-amino-5-(4-chloropheny)-1,3,4-oxadiazole and 4-(trifluoromethyl)benzoyl chloride. 

Procedure c: reaction time 16 hours at room temperature, yield 33 % as red solid (m.p. 234-235 °C). 

TLC: dichloromethane/methanol/ethyl acetate (95:2.5:2.5) - Rf: 0.34. Eluent for chromatography: 

dichloromethane/methanol/ethyl acetate (95:2.5:2.5 to 90:5:5). 
1
H NMR (300 MHz, CDCl3): δ 8.33 

(d, J = 7.0 Hz, 2H, ArH), 7.97 (d, J = 8.0 Hz, 2H, ArH), 7.73 (d, J = 7.0 Hz, 2H, ArH), 7.52 (d, J = 

8.0 Hz, 2H, ArH) ppm. 
19

F NMR (282 MHz, CDCl3): δ -63.08 (s, CF3) ppm. 

1.1.7.19. 4-trifluoromethyl-N-(4-(4-chlorophenyl)-isoxazol-3-yl) benzamide (26). Starting 

compounds: 35 and 4-(trifluoromethyl)benzoyl chloride. Procedure d: at 40 °C, yield 10 % as light 

yellow solid (m.p. 171-173 °C). TLC: cyclohexane/ethyl acetate (7:3) - Rf: 0.45. Eluent for 

chromatography: cyclohexane/ethyl acetate (7:3). 
1
H NMR (300 MHz, acetone-d6): δ 10.17 (br s, 

1H, NH exchanged with D2O), 9.08 (s, 1H, ArH), 8.22 (d, J = 8.4 Hz, 2H, ArH), 7.90 (d, J = 8.4 

Hz, 2H, ArH), 7.59 (d, J = 8.6 Hz, 2H, ArH), 7.41 (d, J =8.6 Hz, 2H, ArH) ppm. 
13

C NMR (75 

MHz, acetone-d6): δ 165.01, 158.22, 155.66, 136.93, 133.19, 132.84, 128.85, 128.78, 128.70, 

127.80, 125.59 (q, J = 3.8 Hz), 122.17, 117.33 ppm. 
19

F NMR (282 MHz, acetone-d6): δ -63.56 (s, 

CF3) ppm. MS (ESI) m/z 367.0 [M + H]
+
. 

1.1.7.20. 4-trifluoromethyl-N-(3-(4-chlorophenyl)-isoxazol-4-yl) benzamide (27). Starting 

compounds: 41 and 4-(trifluoromethyl)benzoyl chloride. Procedure b: yield 53 % as off-white solid 

(m.p. 162-163 °C). TLC: cyclohexane/ ethyl acetate (7:3) - Rf: 0.58. Eluent for chromatography: 

cyclohexane/ethyl acetate (75:25). 
1
H NMR (300 MHz, acetone-d6): δ 9.57 (br s, 1H, NH 

exchanged with D2O), 9.31 (s, 1H, ArH), 8.19 (d, J = 8.2 Hz, 2H, ArH), 7.87 (d, J = 8.2 Hz, 2H, 

ArH), 7.82 (d, J = 8.5 Hz, 2H, ArH), 7.57 (d, J = 8.5 Hz, 2H, ArH) ppm. 
13

C NMR (75 MHz, 

acetone-d6): δ 164.64, 155.70, 152.68, 135.46, 132.96, 132.54, 129.78, 129.18, 128.56, 127.07, 

125.46 (q, J = 3.8 Hz), 122.18, 117.69 ppm. 
19

F NMR (282 MHz, acetone-d6): δ -63.49 (s, CF3) 

ppm. 
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1.1.7.21. 4-trifluoromethyl-N-(5-(4-chlorophenyl)-1-methylimidazol-4-yl)benzamide (28). 

Starting compounds: 43 and 4-(trifluoromethyl)benzoyl chloride. Procedure c: at 0 °C, yield 28 % 

as brown oil. TLC: dichloromethane/methanol (9:1) – Rf: 0.55. Purified by precipitation as 

hydrochloride salt with 2M HCl in Et2O. 
1
H NMR (300 MHz, CD3OD): δ 8.96 (s, 1H, ArH), 8.04 

(d, J = 8.2 Hz, 2H, ArH), 7.83 (d, J = 8.2 Hz, 2H, ArH), 7.60 (d, J = 8.6 Hz, 2H, ArH), 7.55 (d, J = 

8.6 Hz, 2H, ArH), 3.84 (s, 3H, CH3) ppm. 
13

C NMR (75 MHz, CD3OD): δ 167.29, 136.53, 135.79, 

135.77, 133.57, 133.51, 131.55, 129.28, 128.41, 126.67, 125.39 (q, J = 3.7 Hz), 125.14, 122.91, 

34.12 ppm. 
19

F NMR (282 MHz, CD3OD): δ -64.52 (s, CF3) ppm. 

1.1.7.22. 4-trifluoromethyl-N-(4-chloro-[1,1-biphenyl]-2-yl) benzamide (30). Starting 

compounds: 48 and 4-(trifluoromethyl)benzoyl chloride. Procedure b: yield 40 % as brown solid 

(m.p. 169-170 °C). TLC: petroleum ether/ethyl acetate (9:1) - Rf: 0.28. Eluent for chromatography: 

cyclohexane/ethyl acetate (9:1). 
1
H NMR (300 MHz, CDCl3): δ 8.39-8.47 (m, 1H, ArH), 7.82 (br s, 

1H, NH exchanged with D2O), 7.66-7.76 (m, 4H, ArH), 7.42-7.52 (m, 3H, ArH), 7.35-7.41 (m, 2H, 

ArH), 7.26-7.29 (m, 2H, ArH) ppm. 
19

F NMR (282 MHz, CDCl3): δ -63.09 (s, CF3) ppm. 

1.1.7.23. 4-trifluoromethyl-N-(4-(4-benzyloxyphenyl)-1,2,5-oxadiazol-3-yl)benzamide (20). 

Starting compounds: 31f and 4-(trifluoromethyl)benzoyl chloride. Procedure b: yield 30 % as gray 

solid (m.p. 218-220 °C). TLC: cyclohexane/ethyl acetate (7:3) - Rf: 0.54. Eluent for 

chromatography: cyclohexane/ethyl acetate (8:2). 
1
H NMR (300 MHz, CDCl3): δ 8.11 (br s, 1H, 

NH exchanged with D2O), 7.99 (d, J = 8.7 Hz, 2H, ArH), 7.79 (d, J = 8.7 Hz, 2H, ArH), 7.64 (d, J = 

9.0 Hz, 2H, ArH), 7.35-7.44 (m, 5H, ArH), 7.09 (d, J = 9.0 Hz, 2H, ArH), 5.12 (s, 2H, CH2) ppm.
 

13
C NMR (75 MHz, acetone-d6): δ 165.23, 160.76, 151.23, 149.56, 136.92, 136.28, 133.60, 133.17, 

129.08, 128.88, 128.43, 127.90, 127.63, 125.73 (q, J = 3.9 Hz), 117.90, 115.34, 69.68 ppm. 
19

F 

NMR (282 MHz, CDCl3): δ -63.58 (s, CF3) ppm. 

1.1.7.24. Ethyl 3-N-(4-trifluoromethylbenzamide)-4-(4-chlorophenyl)furan-2-carboxylate (46). 

Starting compounds: 45 and 4-(trifluoromethyl)benzoyl chloride. Procedure d: yield 46 % as 

brownish solid (m.p. 166-168 °C). TLC: petroleum ether/ ethyl acetate (9:1) - Rf: 0.16. Eluent of 

chromatography: petroleum ether/ethyl acetate (9:1). 
1
H NMR (300 MHz, CDCl3): δ 9.20 (s, 1H, 

NH exchanged with D2O), 7.99 (d, J = 8.2 Hz, 2H, ArH), 7.74 (d, J = 8.2 Hz, 2H, ArH), 7.59 (s, 

1H, ArH), 7.30-7.35 (m, 4H, ArH), 4.42 (q, J = 7.1 Hz, 2H, CH2), 1.41 (t, J = 7.1 Hz, 3H, CH3) 

ppm. 
13

C NMR (75 MHz, CDCl3): δ 162.77, 158.89, 141.96, 135.43, 133.31, 132.87, 132.71, 

131.10, 128.95, 127.79, 127.25, 126.99, 124.89 (q, J = 3.7 Hz), 123.16, 120.69, 60.46, 13.31 ppm. 
19

F NMR (282 MHz, CDCl3): δ -63.11 (s, CF3) ppm. 

1.1.8. Synthesis of 4-hydroxy-N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-

yl)benzamide (14) 

A solution of 1M BBr3 in dry dichloromethane (2.26 mmol) was added dropwise to a solution of 

compound 13 (0.430 mmol) in dry dichloromethane (5 mL) at room temperature, under nitrogen 

atmosphere. The mixture was stirred for 12 hours. Upon completion, the solution was treated with 

water (4 mL) and the organic layer was separated. Then the aqueous phase was extracted with ethyl 

acetate (3×10 mL) and the collected organic phase was washed with brine. The organic layer was 

dried over Na2SO4, filtered and evaporate under reduced pressure giving a crude product, which 

was purified by flash chromatography (eluent: cyclohexane/ethyl acetate 7:3) to afford intermediate 

14. Yield 35 % as white solid (m.p. 225-226 °C). (TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.20). 
1
H-NMR (300 MHz, acetone-d6): δ 10.16 (br s, 1H, NH exchanged with D2O), 9.23 (br s, 1H, OH 

exchanged with D2O), 7.94 (d, J = 8.7 Hz, 2H, ArH), 7.83 (d, J = 8.5 Hz, 2H, ArH), 7.54 (d, J = 8.5 

Hz, 2H, ArH), 6.96 (d, J = 8.7 Hz, 2H, ArH) ppm. 
13

C NMR (75 MHz, acetone-d6): δ 167.77, 

162.38, 150.75, 150.07, 136.58, 130.30, 129.12, 128.87, 124.89, 123.05, 115.31 ppm. 

1.1.9. Synthesis of 4-((4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl)carbamoyl)phenyl 

dihydrogenphosphate (15) 
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In a two-necked flask, compound 14 (0.143 mmol) was dissolved in dry acetonitrile (1 mL) under 

nitrogen atmosphere and the mixture was cooled to -10 °C with an ice-acetone bath. CCl4 (0.07 mL) 

was added followed by N,N-diisopropylethylamine (0.301 mmol) and N,N-dimethylaminopyridine 

(0.014 mmol). After dropping dibenzylphosphite (0.280 mmol), the mixture was stirred for 3 hours 

at -10 °C. When the reaction was complete, an aqueous solution of 0.5M KH2PO4 (2 mL) was added 

and the system was allowed to warm at room temperature. The mixture was extracted with ethyl 

acetate (3×10 mL) and the combined organic phases were washed with water (1×5 mL) and brine 

(1×5 mL), dried over Na2SO4, filtered and concentrated in vacuo. Dibenzyl (4-((4-(4-chlorophenyl)-

1,2,5-oxadiazol-3-yl)carbamoyl)phenyl) phosphate was purified by flash chromatography (eluent: 

dichloromethane/ methanol 98:2). Yield 45 % as brown foamy solid. TLC: 

dichloromethane/methanol (98:2) - Rf: 0.3. 
1
H NMR (300 MHz, CD3OD) δ 7.95 (d, J = 8.8 Hz, 2H, 

ArH), 7.74 (d, J = 8.7 Hz, 2H, ArH), 7.50 (d, J = 8.8 Hz, 2H, ArH), 7.34-7.39 (m, 5H, ArH), 7.27 

(d, J = 8.7 Hz, 2H, ArH), 5.21 (s, 2H, CH2), 5.18 (s, 2H, CH2) ppm. A suspension of the dibenzyl 

phenylphosphate (0.044 mmol) and palladium on carbon (10 % w/w, 2.54 mg) in methanol (5 mL) 

was hydrogenated at room temperature for 3 hours. After completion of the reaction, the catalyst 

was filtered off on Celite® and the filtrate was concentrated under reduced pressure to afford the 

final compound 15. The product was purified on semipreparative RP-HPLC (Kinetex® 2.6 µm C18 

column, 100 Å, 30 x 2.1 mm, 80 % H2O/ 20 % acetonitrile and 1/1000 of trifluoroacetic acid, 0.8 

mL/min flow rate and UV detector). Yield 69 % as light brown oil. 
1
H NMR (300 MHz, CD3OD): δ 

7.84 (d, J = 10.3 Hz, 2H, ArH), 7.63 (d, J = 9.7 Hz, 2H, ArH), 7.39 (d, J = 9.7 Hz, 2H, ArH), 7.26 

(d, J = 10.3 Hz, 2H, ArH) ppm. MS (ESI) m/z 396.1 [M + H]
+
. 

1.1.10. Synthesis of 4-aminophenyl derivatives (17 ,23) 

To a solution of the suitable nitrophenyl derivative (0.062 mmol) in ethyl acetate (4 mL), tin (II) 

chloride (0.310 mmol) was added and the mixture was refluxed for 7 hours. After quenching by 

addition of a saturated aqueous NaHCO3 until pH=7-8, the precipitated tin salts were eliminated by 

filtration and the aqueous phase was extracted with ethyl acetate (3×10 mL). The organic layer was 

dried over Na2SO4, filtered and evaporated under vacuum. The residue was purified on silica gel 

column chromatography (eluent: cyclohexane/ethyl acetate 6:4) to give the final compound. 

1.1.10.1 4-amino-N-(4-(4-chlorophenyl)-1,2,5-oxadiazol-3-yl)benzamide (17). Starting 

compound: 16. Yield 70 % as yellow solid (m.p. 153-154 °C). TLC: cyclohexane/ethyl acetate (6:4) 

- Rf: 0.22. Eluent for flash chromatography cyclohexane/ethyl acetate 6:4. 
1
H NMR (300 MHz, 

acetone-d6): δ 9.82 (br s, NH, 1H exchanged with D2O), 7.64-7.70 (m, 4H, ArH), 7.40 (d, J = 8.7 

Hz, 2H, ArH), 6.60 (d, J = 8.4 Hz, 2H, ArH), 5.35 (br s, 2H, NH2 exchanged with D2O) ppm. 
13

C 

NMR (75 MHz, acetone-d6): δ 166.09, 153.41, 151.15, 150.88, 136.17, 130.26, 129.36, 129.30, 

125.46, 119.84, 113.35 ppm. 

1.1.10.2. 4-trifluoromethyl-N-(4-(4-aminophenyl)-1,2,5-oxadiazol-3-yl)benzamide (23). Starting 

compound: 22. Yield: 78 % as brown foamy solid. TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.30. 

Eluent for flash chromatography: from cyclohexane/ethyl acetate 8:2 to 6:4. 
1
H NMR (300 MHz, 

acetone-d6): δ 10.15 (br s, 1H, NH exchanged with D2O), 8.14 (d, J = 8.2 Hz, 2H, ArH), 7.80 (d, J = 

8.2 Hz, 2H, ArH), 7.43 (d, J = 8.8 Hz, 2H, ArH), 6.60 (d, J = 8.8 Hz, 2H, ArH), 5.03 (br s, 2H, NH2 

exchanged with D2O) ppm. 
13

C NMR (75 MHz, acetone-d6): δ 165.21, 151.60, 151.02, 149.25, 

136.49, 128.81, 128.64, 128.34, 125.72 (q, J = 3.5 Hz), 119.99, 114.09, 112.63 ppm. 
19

F NMR (282 

MHz, CDCl3): δ -63.99 (s, CF3) ppm. 

1.1.11. Synthesis of 4-((4-(4-chlorophenyl)-1,2,5-oxadiazol-3-

yl)carbamoyl)benzoic acid (19) 

To a solution of compound 18 (0.066 mmol) in ethanol (5 mL), 3N NaOH (2 mL) was added at 

room temperature. The reaction mixture was heated at reflux for 3 hours and, after cooling to room 

temperature, it was concentrated under vacuum. The residue was diluted with water and extracted 

with ethyl acetate (3×10 mL). The aqueous phase, which contained the sodium salt of 19, was 
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acidified with a solution of 3N HCl until pH = 2 and extracted with ethyl acetate (3×10 mL). The 

organic layer was dried over Na2SO4, filtered and evaporated under reduced pressure. Yield 81 % as 

white solid (m.p. 297-298 °C). TLC: dichloromethane/methanol (9:1) - Rf: 0.21. 
1
H NMR (300 

MHz, DMSO-d6): δ 8.02-8.09 (m, 4H, ArH), 7.78 (d, J = 8.4 Hz, 2H, ArH), 7.59 (d, J = 8.7 Hz, 2H, 

ArH) ppm. 
13

C NMR (75 MHz, DMSO-d6): δ 167.26, 166.52, 151.32, 150.66, 136.37, 136.31, 

135.23, 130.20, 130.01, 129.85, 129.10, 124.78 ppm. 

1.1.12. Synthesis of 4-((4-(4-hydroxyphenyl)-1,2,5-oxadiazol-3-yl)-4-

trifluoromethylbenzamide (21) 

A suspension of compound 20 (0.54 mmol) and catalytic amount of palladium on carbon (10 % 

w/w) in ethyl acetate (9 mL) and methanol (1 mL) was hydrogenated at room temperature for 24 

hours. The resulting mixture was filtered and extracted with diethyl ether (3×10 mL). the organic 

layer was dried over Na2SO4, filtered and evaporated in vacuo. The crude oil was purified by flash 

chromatography eluting with cyclohexane/ethyl acetate (7:3) to afford 21. Yield: 91.5 % as white 

foamy solid. TLC: cyclohexane/ethyl acetate (8:2) - Rf: 0.13. 
1
H NMR (300 MHz, acetone-d6): δ 

10.43 (br s, 1H, NH exchanged with D2O), 8.98 (br s, 1H, OH exchanged with D2O), 8.26 (d, J = 

8.1 Hz, 2H, ArH), 7.93 (d, J = 8.1 Hz, 2H, ArH), 7.71 (d, J = 8.7 Hz, 2H, ArH), 6.95 (d, J = 8.7 Hz, 

2H, ArH) ppm. 
13

C NMR (75 MHz, acetone-d6): δ 165.52, 159.90, 151.61, 149.69, 136.60, 129.44, 

129.08, 125.95 (q, J = 3.7 Hz), 116.78, 116.20 ppm. 
19

F NMR (282 MHz, CDCl3): δ -63.97 (s, CF3) 

ppm. 

1.1.13. Synthesis of 3-[4-(trifluoromethyl) benzamino] -4-(chlorophenyl)furan-2-

carboxylic acid (47) 

Intermediate 46 (0.27 mmol) was dissolved in a mixture of tetrahydrofuran and ethanol (1:1, 4 

mL) and 1N NaOH (1 mL) was added dropwise. The reaction was refluxed for 1 hour and the 

solvents were removed under vacuum. In order to purify the reaction mixture from the unreacted 

starting materials, the mixture was diluted with water (4 mL) and washed with dichloromethane (4 

mL). The aqueous layer that contained the sodium salt of the final compound was acidified with 1N 

HCl (2 mL) and extracted with ethyl acetate (2×2 mL). The organic layers were dried and 

concentrated under vacuum, affording the pure carboxylic acid (47). Yield: 71 % as yellow-brown 

solid (m.p. 188-191 °C). TLC: dichloromethane/ methanol (8:2) - Rf = 0.26. 
1
H NMR (300 MHz, 

CD3OD): δ 8.09 (d, J = 8.0 Hz, 2H, ArH), 7.79 (d, J = 8.0 Hz, 2H, ArH), 7.72 (s, 1H, ArH), 7.44 (d, 

J = 8.5 Hz, 2H, ArH), 7.31 (d, J = 8.5 Hz, 2H, ArH) ppm. 
13

C NMR (75 MHz, CD3OD): δ 166.53, 

165.74, 141.43, 140.42, 137.04, 132.62, 130.55, 128.13, 128.11, 128.09, 125.84, 125.57, 125.14 (q, 

J = 3.5 Hz), 124.17, 121.97 ppm. 
19

F NMR (282 MHz, CD3OD): δ -64.49 (s, CF3) ppm. 

1.1.14. Synthesis of N-(4-(4-chlorophenyl)-furan-3-yl)-trifluoromethylbenzamide 

(29) 

A mixture of compound 47 (0.293 mmol), Ag2CO3 (0.0293 mmol), acetic acid (0.015 mmol) in 

dry DMSO (0.29 mL) was stirred at 120 °C under nitrogen atmosphere for 16 hours. After the 

completion, the reaction was cooled to room temperature and ethyl acetate (4 mL) was added. The 

organic layer was washed with saturated sodium bicarbonate solution (2 mL), water (2 mL) and 

brine (2 mL), and dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. 

The crude was purified by flash chromatography (eluent: cyclohexane/ethyl acetate - 8:2) to give 

the final compound. Yield 25 % as yellow-orange solid (m.p. 115-116 °C). TLC: cyclohexane/ethyl 

acetate (8:2) - Rf: 0.58. 
1
H NMR (300 MHz, CDCl3): δ 8.28 (s, 1H, ArH), 7.79 (d, J = 8.1 Hz, 2H, 

ArH), 7.66 (d, J = 8.3 Hz, 2H, ArH), 7.62 (br s, 1H, NH exchanged with D2O), 7.36-7.44 (m, 3H, 

ArH), 7.27 (d, J = 8.3 Hz, 2H, ArH) ppm. 
13

C NMR (75 MHz, CDCl3): δ 163.18, 138.63, 136.75, 

134.48, 134.31, 133.54, 129.83, 129.34, 128.83, 127.86, 127.35, 125.98 (q, J = 3.7 Hz), 122.06, 

119.01 ppm. 
19

F NMR (282 MHz, CDCl3): δ -63.11 (s, CF3) ppm. 

1.2. Biological evaluation 
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The MTT-assay was performed as previously described.
[10,11]

 The HCT-116 cell line (colorectal 

cancer) was cultured in McCoy’s media. The media was supplemented with penicillin (10,000 

U/mL), streptomycin (10 mg/mL), nonessential amino acid and 10 % Fetal Calf Serum (FCS). The 

same media was utilized for the experiments where cells were incubated with newly synthesized 

compounds dissolved in DMSO. The same volume of solvent was added to control conditions and 

did not exceed 0.5 % v/v. 

 

1.3. Computational methodologies 

Compounds were drawn by using ChemDraw
[12]

 program and VEGA ZZ suite
[13,14]

. The 

eXtended Electron Distribution (XED) force field implemented in Cresset’s Forge v10.4.2 software 

was used to generate conformations and molecular fields.
[15] 

Conformations were optimized until 

the gradient was smaller than 0.1 kcal mol
-1

 Å; duplicates were filtered setting a 0.5 Å heavy atom 

RMSD threshold. Only conformations 3.0 kcal mol
-1

 energy window from the global minimum 

were retained, up to a maximum of 1000 for each molecule. Compounds were aligned by maximum 

common substructure against the crystallographic structure of MD77.
[3]

 The functional groups 

which were not part of the maximum common substructure were aligned based on a combination of 

three-dimensional shape and molecular interaction fields, each weighted at 50 %. A disparity matrix 

was generated by exhaustive comparisons between each pair of aligned structures; the similarity 

values were computed by the same 3D similarity function used for the alignment. The disparity 

matrix was used to carry out the analysis of activity cliff pairs through the Activity Miner 

methodology.
[8]

 The information obtained from individual activity cliffs was then conveyed into a 

qualitative Activity Atlas model using the recommended default settings.
[9]

 

1.4. Crystallography 

The crystals of 5 and 8 were obtained by crystallization from methanol as colorless prisms. They 

were mounted on a Bruker-Axs CCD-based three circle diffractometer (5) and on an Enraf-Nonius 

CAD-4 diffractometer (8), both working at ambient temperature with graphite-monochromatized 

using MoK (=0.71073Å) radiation. The structures were solved by direct methods
[16]

 and the 

refinements were carried out by full-matrix least-squares. All non-H-atoms were refined 

anisotropically. Hydrogen atoms in both molecules were introduced at calculated positions, in their 

described geometries and allowed to ride on the attached carbon atom with fixed isotropic thermal 

parameters (1.2Ueq of the parent carbon atom). Refinements were carried out with SHELX-97. 
[17]

 

Geometrical calculations were carried out with the program PARST.
[18] 

CCDC-1496338 (5) and CCDC-1496339 (8) numbers contain the supplementary crystallographic 

data for this paper (excluding structure factors). These data can be obtained free of charge via 

www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 

12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk). 

Crystal data of 5: C15 H10 Cl N3 O2, Mr = 299.71 g/mol, orthorhombic, Space group Pbc21; a 

= 13.768 (3) Å, b = 5.074 (2) Å, c = 19.460 (3) Å, V = 1382.5(5) Å
3
, Z = 4, Dcalc = 1.44 Mg/m

3
, 

F(000) = 616, R = 0.028 (reflections collected = 10460), wR2 = 0.059, T = 293(2)K, GOF = 0.929. 

The reflections were collected in the range 2.08° ≤ θ ≤ 27.12° (limiting indices = -17≤h≤17, -

6≤k≤6, -25≤l≤25) employing a 0.55 x 0.22 x 0.02 mm
3
 crystal. The residual positive and negative 

electron densities in the final map were 0.129 and –0.159 eÅ
-3

. 

Crystal data of 8: C16 H10 F3 N3 O2, Mr = 333.27g/mol, orthorhombic, Space group Pbc21; a 

= 4.982(2) Å, b = 14.446(3) Å, c = 20.630(5) Å, V = 1484.6(8) Å
3
, Z = 4, Dcalc = 1.491 Mg/m

3
, 

F(000) = 680, R = 0.0985 (reflections collected = 1163), wR2 = 0.229, T = 293(2)K, GOF = 1.219. 

The reflections were collected in the range 2.82° ≤ θ ≤ 25.97° (limiting indices = -1≤h≤6, -1≤k≤17, 
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-1≤l≤25) employing a 0.65 x 0.52 x 0.42 mm
3
 crystal. The residual positive and negative electron 

densities in the final map were 0.386 and -0.244 eÅ
-3

. 

 

2. Results and discussion 

 

2.1. Chemistry 

Compounds 1-24 were prepared following the general procedures reported in Scheme 1. 

 

Key intermediates 31a and 31b-g were synthesized by a one pot reaction
[1]

 or following a multi-step 

procedure
[3]

, respectively. 

The coupling reaction between the proper 1,2,5-oxadiazol-3-amines (31a-g) and the suitable acyl 

chloride was performed in presence of sodium hydride as base, affording compounds 1-

13,16,18,20,22,24. 

Compound 13 was demethylated (14), the hydroxyl group was phosphorylated with 

dibenzylphosphite and subsequently debenzylated by catalytic hydrogenation over Pd/C leading to 

derivative 15. The nitro group of compounds 16 and 22 was reduced to the corresponding amine (17 

and 23, respectively), while the hydrolysis of nitrile 18 proceeded under basic conditions to achieve 

carboxylic acid 19. The cleavage of benzyl ether (20) was performed by palladium-catalyzed 

hydrogenation, to give compound 21. 

The other N-heteroaryl-benzamides (25-30) were prepared starting from the corresponding 

heteroaryl amines which were coupled with 4-(trifluoromethyl)benzoyl chloride in presence of a 

proper base (pyridine, trimethylamine or 60 % sodium hydride). 

In details, compounds 25 was prepared starting from the commercially available 2-amino-5-(4-

chlorophenyl)-1,3,4-oxadiazole which was acylated in pyridine as shown in Scheme 2. 

The key intermediate 4-(4-chlorophenyl)-3-aminoisoxazole (35) was synthesized starting from the 

commercially available ethyl 5-amino-4-(4-chlorophenyl) isoxazol-3-carboxylate by a Sandmeyer 

reaction, performed in aqueous solution.
[19]

 The obtained compound 32 was treated with hydrazine 

monohydrate (33) and then with sodium nitrite in presence of hydrochloric acid giving after Curtius 

rearrangement the corresponding acyl azide (34). The addition of water led to 4-(4-chlorophenyl)-3-

aminoisoxazole (35),
[20]

 which was acylated in presence of triethylamine, providing compound 26 

(Scheme 3). 

The intermediate 4-amino-3-(4-chlorophenyl) isoxazole (41) was prepared starting from the 

commercially available 4-chlorophenyl benzaldehyde, which was firstly treated with hydroxylamine 

hydrochloride and then with N-chlorosuccinimide.
[3]

 The chloroxime (36) was reacted with 

compound 37, previously synthesized following a literature procedure.
[21]

 The resulting ethyl 3-(4-

chlorophenyl)-4-isoxazolcarboxylate (38) was hydrolyzed under acidic conditions (39) and the acyl 

azide was formed by direct reaction of the carboxylic acid with diphenyl phosphoryl azide (DPPA). 

According to Curtius rearrangement, acyl azide group decomposed to isocyanate, which underwent 

nucleophilic attack to yield the corresponding carbamate (40). Subsequently, the N-Boc protecting 

group was removed with trifluoroacetic acid and the amine 41 was finally condensed with 4-

(trifluoromethyl)benzoyl chloride in the presence of 60 % sodium hydride, leading to compound 27 

(Scheme 4). 

The synthesis of the final product 28 started from the commercially available 5-chloro-1-methyl-4-

nitroimidazole, which underwent Suzuki coupling reaction (42),
[22]

 followed by catalytic 

hydrogenation with Pd(OH)2, to afford the amine 43.
[23,24]

 This latter was condensed with the acyl 

chloride in the presence of trimethylamine, affording the compound 28 (Scheme 5). 

The synthesis of the final product 29 started from (4-chlorophenyl)acetonitrile, which was treated 

with metallic sodium, ethyl formate and dry ethanol for 16 hours, obtaining the sodium salt 

intermediate 44. The latter was cyclized with ethyl chloroformate in a one pot reaction
[25]

 to 

intermediate 45, which was condensed with 4-(trifluoromethyl)benzoyl chloride in the presence of 
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triethylamine, by microwave assisted reaction (46). The ester group of intermediate 46 was firstly 

hydrolyzed (47) and then decarboxylated
[26]

 to give compound 29 (Scheme 6). 

The starting reagent for the synthesis of 30 was 2-iodoaniline, which was arylated by Suzuki 

reaction (48) 
[27]

 and condensed with the acyl chloride in the presence of triethylamine (Scheme 7). 

 

2.2 Biological evaluation  

The compounds were evaluated by MTT-assay on the HCT-116 cancer cell line and the results were 

reported as half maximal inhibitory concentration (IC50, μM) in Table 1. 

The SAR study on 1,2,5-oxadiazole series started evaluating the effects of the displacement of the 

chlorine atom from para- to ortho- and meta- positions in the phenyl ring, keeping the p-CF3 group 

on the benzamide. Isomers bearing the chlorine atom in ortho (1, IC50 = 56.7 μM) and meta (2, IC50 

= 15.4 μM) positions were endowed with lower antiproliferative activity than the parent compound. 

In particular, 1 showed moderate growth inhibition properties, while 2 exhibited a more interesting 

activity, although the para substitution remained the preferred. 

Similarly, the effects of moving CF3 group to different positions on the benzoyl ring was 

considered: the isomers 3 (n.a) and 4 (IC50 = 7.4 μM) indicated the ortho position as detrimental, 

because compound 3 completely lost the activity, whereas the meta isomer retained almost the same 

biological properties of the lead. 

Once evaluated the activity of MD77 isomers, also partial (5-8) or total elimination (9) of 

substituents on aromatic rings was taken into account in order to ascertain their biological role. 

The double p-Cl (10) and p-CF3 (11) substitution as well as the exchange between the p-Cl and p-

CF3 groups (12), were also designed. If the phenyl rings were both substituted with chlorine atoms 

(10) or with CF3 groups (11) a different behavior was observed: the first one was completely 

inactive, while the second showed a moderate activity (IC50 = 24.1 μM). 

On the other hand, compound 12, characterized by the same substituents of MD77 but in inverted 

position, emerged as the most active among the analogues bearing the 1,2,5-oxadiazole scaffold, 

being slightly more potent than the reference (IC50 = 0.95 versus 1.3 μM, respectively). 

Finally, fixing the p-Cl phenyl moiety, the substituent in para- position of the benzamide group was 

modulated (13-19). When the CF3 group in para position of the benzoyl ring was substituted by a 

NO2 (16, IC50 = 46.7 μM) or CN (18, IC50 = 19.4 μM) group, a partial cytotoxic activity was 

retained. 

Analogously, fixing the CF3 in para- position of the benzamide, the substituent in para- position of 

the phenyl moiety was investigated (20-23). Among these latter, 22, bearing the NO2 substituent 

instead of the p-chlorine atom on the 4-phenyl, showed modest growth inhibitory properties (IC50 = 

58.2 μM). 

As for MD77 bioisosteric analogues, only 25 and 28 presented a modest and similar potency (IC50 

about 50 μM). This drop in biological activity supported the importance of the 1,2,5-oxadiazole 

scaffold for cytotoxicity.  

 

2.3 Computational studies 

To get an overview of the SAR landscape, focusing on the prevalent SAR signals, the whole pool of 

molecules was analyzed by using Activity Miner and Activity Atlas modules as implemented in 

Cresset’s Forge software.
[7]

 Pairs of compounds can be characterized by their “disparity”, namely 

the difference in their activity divided by the distance between them, where this latter is obtained 

from their 2D or 3D similarity. 

Molecule pairs that have a low disparity and high similarity define bioisosteres or flat regions in the 

SAR. These regions can be useful to modify physicochemical properties without losing activity. 

Conversely, pairs with high disparity lie in the steepest regions of the SAR landscape and feature 

small structural variations that are crucial for the biological activity. By comparing all pairs of 

molecules, Activity Miner identifies the “activity cliffs”, i.e. those pairs where small structural 
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differences cause large changes in activity. The wealth of information gathered from the analysis of 

each individual activity cliff can be summarized into a global, interpretable Activity Atlas model. 

The Activity Atlas method analyzes activity and alignment data via a Bayesian approach: each 

activity cliff provides evidence that a specific change in 3D properties causes a significant change 

in biological activity: the larger the disparity, the stronger the evidence. An Activity Atlas model 

consists of three different 3D visual maps: the ‘Activity cliff summary’ which reports the SAR 

gathered from the analysis of individual activity cliffs; the ‘average of actives’, which highlights the 

features that active molecules have in common, and the “regions explored” map, which shows how 

thoroughly the SAR have been explored in a series and helps prioritizing molecules which bring 

novel SAR insight over trivial analogues. As in this work the disparity matrix, on which the 

Activity Miner and Activity Atlas analyses are based, was computed using a 3D similarity metric, it 

is important that a reasonable alignment of the molecules is generated. This task is made easier by 

the availability of the crystallographic coordinates of the lead MD77 
[3]

 (Figure 2a: for sake of 

clarity the three rings were named A, B and C), which was used as a template to align the rest of the 

series. Its molecular arrangement in the solid state was found to largely correspond to the most 

stable conformation as calculated in vacuo.
[3]

 To verify the reliability of this approximation, we 

determined the crystal structures of two monosubstituted analogues bearing either the Cl atom on 

system A (5) or the CF3 group on ring C (8), which confirmed to have almost the same 

conformation of the reference (see below). As the compounds share a fair degree of structural 

similarity across the series, they were aligned by superimposing their maximum common 

substructure, while the functional groups which were not part of it were aligned based on a 

combination of 3D shape and molecular interaction fields. Firstly, the disparity matrix across all 

aligned ligands was generated by Activity Miner (Figure 3). The analysis of this matrix led to 

identify a number of compound pairs that constituted activity cliffs, and were further studied 

through their 3D field difference maps (Figure 4). Then, an Activity Atlas model was computed to 

enable a global view at the SAR of the series.
[28,29]

 The results of the activity cliff summary analysis 

were discussed considering MD77 as reference and built up from representative low energy 

conformations of the aligned compounds of the dataset (Figure 2b). These outcomes were shown as 

3D maps: 

 Average electrostatics/hydrophobics of actives (Figure 2c,e) was calculated considering only the 

active molecules and pointed out the essential structural features for the activity. 

 Activity cliff summary of electrostatic/hydrophobic fields (Figure 2d,f) displayed the effects on the 

activity of the various structural modulations explored throughout the series, taking into account 

both cytotoxic and inactive compounds. 

The models provided indications about the electrostatic, hydrophobic and shape features underlying 

the cytotoxic activity. An increase in negative electrostatic field on core B of the structure could 

have positive effects on the activity (in cyan in Figure 2c), while an enhanced π electrostatic 

potential on system C is not suitable (in red in Figure 2c). Electron withdrawing substituents which 

generate a more positive (or less negative) electrostatic field in meta position on ring A (in red in 

Figure 2d) are beneficial for activity, whereas opposite characteristics are required for para 

position. 

Regarding the hydrophobic and steric aspects, Figure 2e highlighted the regions (in yellow) 

where active molecules could make hydrophobic interactions. As suitable changes, Figure 2f 

showed that steric hindrance on ring A was well tolerated in para position (green area), while to 

ortho or meta (magenta area) it was detrimental for activity. Moreover, steric bulk was unfavorable 

on system C (magenta area). 

As for the disparity matrix (Figure 3), the similarity value for each pair of compounds was 

computed as the average of their 3D field and shape similarity.
 
The color of each cell indicates the 

direction the activity is going, moving from one member of the pair to the other: red means the 

activity is decreasing; green means the activity is increasing between the pair. The intensity of the 

shading increases with the magnitude of the disparity, which in turn relates to how steep the activity 
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cliff is. The result is a focused view of the SAR around a particular compound which can help 

understand subtle molecule-to-molecule structure-activity changes and identify potential outliers. 

Plotting the field difference maps (Figure 4) for selected pairs helps finding a structural rationale 

for the differences in activity.  

Matching MD77 with representative compounds in the dataset with high, mid, and low potencies, 

we evidenced that the lead and the most active derivative 12 shared an equivalent electrostatic 

potential profile (Figure 4a), in line with their comparable biological activity. This observation is 

almost conserved taking into account the active derivative 2, which displayed a reasonable 

electrostatic potential overlay with MD77 (Figure 4b). Regarding the cytotoxic properties of this 

derivative, the effect of the meta-Cl substitution of ring A was remarkable, which aligned well with 

the average electrostatics. In this context, the lower potency of compound 1, characterized by the 

shift of the chlorine substituent in ortho position, could be correlated to the negative electrostatic 

field difference present on ring A (Figure 4c). The mid-range cytotoxicity of compound 16 (Figure 

4d), bearing the NO2 on ring C, could be associated to a more extended negative electrostatic 

potential region on this group. In the inactive compound 3, this key field difference on region C was 

more evident, as the π-cloud spanned over a larger surface comprising the ortho position. Moreover, 

a positivity associated to the para position of C was seen (Figure 4e). 

Most striking were the differences between MD77 and compound 25, having in B an 1,3,4-

oxadiazole (Figure 4f). Despite the substantial changes of electrostatic potential around ring A, 25 

retained a modest activity, explained by the electron density over the 1,3,4-oxadiazole, which was 

suggested as important for activity by the average electrostatics analysis (Figure 2C). 

 

2.4 Crystallographic studies 

We supported the above modeling studies by means of a crystallographic analysis on two 

representative terms 5 and 8, for understanding the influence of the phenyl substituents on the 

conformation (Figure 5). 

A comparison of crystal structures 5 and 8 with that of MD77 previously described 
[3]

 showed an 

almost perfect superimposition. As underlined in the previously published results, this molecular 

arrangement corresponded to the most stable conformation calculated in vacuo. For both 

derivatives, the analysis of the crystal packing evidenced that adjacent molecules were connected by 

NH
…

O, CH
…

N, and CH
…

Cl (5), C=O
…

F (8), type contacts, stabilized by stacking interactions. 

Despite the increased number of interactions that could be forwarded by the presence of the 

substituents in both phenyl groups, we pointed out that in the new two crystal structures the amidic 

groups arrange in the same way and the respective quite perpendicular orientation of the benzene 

rings does not change. This finding supports the hypothesis that the 3D electrostatic environment 

could have a greater influence on the activity over other types of geometry. 

 

Conclusions 

We designed and synthesized a new series of 1,3,5-oxadiazole derivatives, as potential anticancer 

agents. We described the synthesis of compounds having different substituents at position 4 of the 

heterocycle, various functional groups on the phenyl ring of the benzamide moiety and bearing an 

aliphatic chain substituting the latter, with the aim of building a diverse library for molecular 

modeling studies.  

The MTT-assay found out promising antiproliferative agents, highlighting the substantial potency 

of some compounds. In particular, the most significant candidate, derivative 12, exhibited IC50 

value of 0.95 µM against HCT-116 cancer cell line, showing a slightly better profile of activity with 

respect to the lead compound.  

The focused SAR study by field-based disparity analysis revealed that an increasing of negative 

electrostatic field on the heterocyclic core of the structure could have positive effects on the 

activity, while an enhanced π electrostatic potential on the benzamide group is not suitable. Electron 
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withdrawing substituents which generated a more positive (or less negative) electrostatic field in 

meta position on phenyl ring A were beneficial for activity, while opposite characteristics are 

required for para position. 

Steric hindrance on the phenyl ring was well tolerated in para position, while in ortho or meta 

was detrimental for activity. Moreover, steric bulk was unfavorable on the benzamide system.  

The solid state conformation determined for two representative terms showed an almost perfect 

superimposition with respect to the reference, supporting the hypothesis that the 3D electrostatic 

environment could have a greater influence on the activity over changes in geometry. 

Concluding, these new insights, obtained using a purely ligand-based strategy based on the analysis 

of three-dimensional shape and molecular fields, will help driving further lead optimization efforts 

on this scaffold.  
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Figure legends  

 

Figure 1. Database of MD77 derivatives submitted to Forge analysis. 

Figure 2. Activity Atlas visual maps. a) MD77 X-ray structure.
[3]

 b) Three-dimensional alignment 

of the dataset. c) Average electrostatic fields of active molecules. d) Activity cliff summary of 

electrostatic field. e) Average hydrophobic fields of active molecules. f) Activity cliff summary of 

hydrophobic region. 

Figure 3. Disparity matrix computed by Activity Miner. Each cell of the matrix reports the 

disparity value between a specific pair of compounds; the similarity was calculated as the average 

of 3D molecular fields and shape, each weighted at 50 %. Red and green boxes indicate respectively 

a decrease and an increase in activity moving from one compound to the other, while the intensity 

of the shading increases with the sharpness of the activity cliff associated to that pair.  

Figure 4. Comparison of field differences for a selection of molecules: compound 1 (a), 2 (b), 3 (c), 

12 (d), 16 (e), 25 (f) with respect to MD77. The field difference map displays the surfaces as 

relative values between pairs of molecules. The regions where the surface is displayed have 

stronger electrostatic fields than the corresponding regions in the compared molecule. 

Figure 5. a. ORTEP 
[30]

 views of 5 (above) and 8 (below), showing the arbitrary atom-labeling 

scheme. Atomic displacement parameters for non-H atoms are at 40% probability level. b. 

Superimposition between 5 (above in green) and 8 (below in blue) onto MD77 (red). 
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Table 1. Antiproliferative activity on HCT-116 cancer cell line. 

 Cmp R R1 IC50 µM 

 

MD77 p-Cl p-CF3 1.3±0.2 

1 o-Cl p-CF3 56.7±3.1 

2 m-Cl p-CF3 15.4±2.8 

3 p-Cl o-CF3 >100 

4 p-Cl m-CF3 7.4±1.15 

5 p-Cl H >100 

6 o-Cl H 76.3±12.8 

7 m-Cl H 73.4±8.3 

8 H p-CF3 >100 

9 H H >100 

10 p-Cl p-Cl >100 

11 p-CF3 p-CF3 24.1±2.3 

12 p-CF3 p-Cl 0.95±0.02 

13 p-Cl p-OCH3 >100 

14 p-Cl p-OH >100 

15 p-Cl p-OPO3H2 >100 

16 p-Cl p-NO2 46.7±14.5 

17 p-Cl p-NH2 >100 

18 p-Cl p-CN 19.4±2.4 

19 p-Cl p-COOH >100 

20 p-OBn p-CF3 >100 

21 p-OH p-CF3 >100 

22 p-NO2 p-CF3 58.2±5.2 

23 p-NH2 p-CF3 >100 

 

 

 

 

24   >100 

 

25 1,2,4-oxadiazole CF3 53.9±5.8 

26 1,2-isoxazole CF3 >100 

27 1,5-isoxazole CF3 >100 

28 N-Me-Imidazole CF3 52.3±8.8 

29 Furan CF3 >100 

30 Phenyl CF3 >100 
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