Synthetic Studies towards Mniopetals (II). A Short Synthesis of Mniopetal E

Johann Jauch^{*}

Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany Fax (0)89-289 13 329; E-mail: Johann.Jauch@ch.tum.de *Received 17 October 2000*

Abstract: A short total synthesis of Mniopetal E in thirteen steps is reported. Key steps are a new and highly diastereoselective lithium phenylselenide induced Baylis-Hillman reaction with Feringa's butenolide, an *endo*-selective intramolecular Diels-Alder reaction (IMDA) and a new variant of the Parikh-Doering oxidation.

Key words: Baylis-Hillman reactions, Diels-Alder reactions, furanones, natural products

Anke and Steglich¹ reported in 1994 the isolation, structure elucidation and determination of the absolute configuration of six new drimane type sesquiterpenes from *Mniopetalum* sp. 87256, the mniopetals A-F **1a-1f** (Figure 1).

Figure 1 Structure of mniopetals A-F 1a-1f.

The mniopetals show various biological activities, among which the most important is the inhibition of HIV reverse transcriptase.¹ Therefore, the mniopetals are attractive targets for synthetic chemists. The mniopetals are related to kuehneromycin A,^{2,3} which also inhibits reverse transcriptase of various retro viruses, and to the marasmanes.⁴

Tadano and coworkers⁵ recently reported a total synthesis of mniopetal E using an intramolecular Diels-Alder reaction (IMDA reaction). Our strategy⁶ is quite different and leads to mniopetal E in a total of thirteen steps from readily available starting materials. Here we wish to report our synthesis of mniopetal E **1e**. According to our strategy **1e** is derived from **2**, which is the result of an IMDA reaction of trienolide **3**. Compound **3** can be disconnected into aldehyde **4** and Feringa's butenolide⁷ **5** according to a Baylis-Hillman reaction. (Scheme 1).

Scheme 1 Retrosynthetic analysis of 1e

Horner-Emmons reaction⁸ of 7^9 with aldehyde 6^{10} led to *E,E*-triene ester **8** in 85% yield. DIBALH reduction¹¹ of the ester group followed by silvlation with TBDPSCl/ imidazole¹² resulted in triene **9**. Next, the mono-substituted double bond was regioselectively converted by a hydroboration-oxidation sequence¹³ into a primary alcohol, which subsequently was oxidized to aldehyde 4 with TEMPO/diacetoxyiodobenzene.¹⁴ At this point, we wished to explore the Baylis-Hillman reaction¹⁵ with Feringa's butenolide 5. Since standard conditions with DAB-CO as nucleophile only work well with β -unsubstituted acrylic acid derivatives and 5 and especially substituted Feringa-butenolides such as **3** are highly base sensitive, we had to develop a new variant of the Baylis-Hillman reaction.¹⁶ Lithium phenylselenide¹⁷ was the nucleophile of choice in that case because of its high nucleophilicity and very low basicity. Michael addition of PhSeLi at -60 °C was followed by highly diastereoselective aldol addition of the aldehyde 4 through a Zimmermann-Traxler transition state and subsequently PhSeLi was eliminated to rebuild the α , β -unsaturated lactone.

a) LiHMDS, THF, -40 °C, 85%, *trans:cis* > 20:1; b) DIBALH, Et₂O, 0 °C, 30 min, 98%; c) TBDPSCl, Imidazole, DMF, RT, 2 h, quant.; d) 9-BBN, THF, RT, 4 h, H₂O₂, NaOH, EtOH, 0 °C, 1 h, 91%; e) TEM-PO/PhI(OAc)₂, RT, 2h, 98%; f) Ph-Se-Li, THF, **5**, -60 °C, 6 h, 88%; g) Xylene, silylated flask, 140 °C, 60 h, 69%; h) Tf₂O, DMAP, 0 °C, 2 h, 98%; i) 2,6-lutidine, 100 °C, 4 h, 84%; j) TBAF, THF, RT, 2 h, 90%; k) DMSO, NEt₃, RT, add pyridine-SO₃ in DMSO via syringe pump during 16 h, 79%; l) cat. OsO₄, NMO, THF/H₂O, 0 °C, 168 h, 62%; m) TFA/H₂O/acetone 1:1:1, RT, 24 h, quant.

Scheme 2 Synthesis of mniopetal E 1e.

LETTER

Thus, we arrived at trienolide 3, which was the starting material for the IMDA reaction.¹⁸ Cyclization of **3** to form 10 proceeded smoothly at 140 °C in xylene in a silylated flask to reduce epimerization at the acetal center. In the following steps 10 was transformed into mniopetal E 1e. First, the secondary alcohol (which has the opposite configuration at C1 in comparison to the mniopetals) was transformed into triflate 11 using trifluoromethanesulfonic anhydride and DMAP as base. Elimination of the triflate group was accomplished in 2,6-lutidine at 100 °C leading to 2. Removal of the silvl protecting group with TBAF¹² was straightforward leading to the β , γ -unsaturated alcohol 12 which had to be converted into an α , β -unsaturated aldehyde 13. This oxidation was best carried out with pyridine-SO₃ complex in DMSO with NEt₃ as base (Parikh-Doering oxidation¹⁹). To obtain reproducible good results it was important to run the reaction under inert atmosphere and to add the pyridine-SO₃ complex dissolved in DMSO very slowly via syringe pump overnight. Now, the two double bonds had different electronic properties and it was possible to transform the more electronrich double bond between C1 and C2 stereoselectively from the si-face into the cis-diol 14 (the only stereoisomer found) with OsO₄/NMO.²⁰ In the final step, the menthyl residue was removed by action of TFA/H2O/acetone (1:1:1) overnight. The product obtained was identical in all respects with the natural mniopetal E.²¹ The complete synthesis is shown in Scheme 2. Starting from aldehyde 6 and phosphonate 7, we were able to synthesize mniopetal E le in only thirteen steps in a total yield of 16% through efficient combination of a new variant of the Baylis-Hillman reaction, the powerful IMDA reaction, a new variant of the Parikh-Doering oxidation and a chemo- and stereoselective cis-hydroxylation.

Acknowledgement

We thank the Deutsche Forschungsgemeinschaft for financial support and BASF AG, Ludwigshafen, Germany, Pfizer AG, Karlsruhe, Germany, Haarmann & Reimer GmbH, Holzminden, Germany, Wacker GmbH, Burghausen, Germany, DEGUSSA AG, Frankfurt a. M., Germany and Bayer AG, Leverkusen, Germany, for chemicals and laboratory equipment. The author gratefully acknowledges Habilitation grants from the Deutsche Forschungsgemeinschaft and the Fazit-Stiftung. We thank Prof. W. Steglich, Ludwig-Maximilians-Universität München, for 600 MHz spectra of natural mniopetal E.

References and Notes

- (a) Kuschel, A.; Anke, T.; Velten, R.; Klostermeyer, D.; Steglich, W.; König, B. J. Antibiot. **1994**, 47, 733. (b) Velten, R.; Klostermeyer, D.; Steffan, B.; Steglich, W.; Kuschel, A.; Anke, T. J. Antibiot. **1994**, 47, 1017. (c) Velten, R.; Steglich, W.; Anke, T. Tetrahedron: Asymmetry **1994**, 5, 1229. (d) Inchausti, A., Yaluff, G., De Arias, A. R., Ferreira, M. E., Nakayama, H., Schinini, A., Lorenzen, K., Anke, T., Fournet, A., Phytother. Res. **1997**, 11, 193.
- (2) Erkel, G.; Lorenzen, K.; Anke, T.; Velten, R.; Gimenez, A.; Steglich, W. Z. Naturforsch. C 1995, 50, 1.
- (3) Jauch, J. Angew. Chem. 2000, 112, 2874; Angew. Chem. Int. Ed. 2000, 39, 2764.

- (4) (a) Ayer, W. A.; Craw, P. A.; Stout, T. J.; Clardy, J. Can. J. Chem. 1989, 67, 773. (b) Ayer, W. A.; Craw, P. A. Can. J. Chem. 1989, 67, 1371.
- (5) (a) Murata, T.; Ishikawa, M.; Nishimaki, R.; Tadano, K. Synlett 1997, 1291. (b) Suzuki, Y.; Nishimaki, R.; Ishikawa, M.; Murata, T.; Takao, K.; Tadano, K. Tetrahedron Lett. 1999, 40, 7835.
- (6) Jauch, J. Synlett 1999, 1325.
- (7) Feringa, B. L.; de Jong, J. C. Bull. Soc. Chim. Belg. 1992, 101, 627 and references cited therein.
- (8) Roush, W. R. J. Am. Chem. Soc. 1980, 102, 1390.
- (9) Baeckström, P.; Jacobsson, U.; Norin, T.; Unelius, C. R. *Tetrahedron* **1988**, *44*, 2541.
- (10) (a) Brannock, K. C. J. Am. Chem. Soc. 1959, 81, 3379.
 (b) Salomon, G.; Ghosh, S. Org. Synth. 1984, 62, 125.
- (11) Winterfeldt, E. Synthesis **1975**, 617.
- (12) Hanessian, S.; Lavallee, P. Can. J. Chem. 1975, 53, 2975.
- (13) (a) Pelter, A.; Smith, K.; Brown, H. C. *Borane Reagents*; Academic Press: London, UK, 1988. (b) Kurth, M. J.; O'Brien, J.; Hope, H.; Yanuck, M. *J. Org. Chem.* **1985**, *50*, 2626.
- (14) De Mico, A., Margarita, R., Parlanti, L., Vescovi, A., Piacantelli, G. J. Org. Chem. **1997**, 62, 6974.
- (15) Ciganek, E. in *Organic Reactions*; Paquette, L. A., Ed.; Wiley: New York, 1997, Vol. 51, p. 201 and references cited therein.
- (16) Jauch, J. J. Org. Chem., in press.
- (17) (a) Ley, S. V.; O'Neil, I. A.; Low, C. M. R. *Tetrahedron* 1986, 42, 5363. (b) Reich, H. J.; Dykstra, R. R. *Organometallics* 1994, 13, 4578.
- (18) Roush, W. R. in *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991, Vol. 5, p. 513 and references cited therein. See also: Taber, D. F.; Saleh, S. A., *J. Am. Chem. Soc.* 1980, *102*, 5085. For details of the described IMDA reaction of 3 see Reiser, U.; Jauch, J.; Herdtweck, E. *Tetrahedron: Asymmetry* 2000, *11*, 3345.
- (19) Tidwell, T. T. in *Organic Reactions*; Paquette, L. A., Ed.; Wiley: New York, 1991, Vol. 39, p. 297 and references cited therein.
- (20) (a) Altenbach, H.-J., Voss, B. Vogel, E. Angew. Chem. 1983, 95, 424; Angew. Chem. Int. Ed. 1983, 22, 424. (b) Van Rheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.

First, we studied the *cis*-hydroxylation with OsO_4 cat./NMO, THF/water, 18 h, r.t. However, under these conditions **13** gave a mixture of **14** (35%) and the regio-isomer **15** (35%).

To run the reaction with acceptable chemoselectivity, we had to decrease the reaction temperature to $0 \, {}^{\circ}C$.

- A typical procedure is as follows: 20 mg 13 (50 µmol) were dissolved in 0.4 mL THF and 0.1 mL water. The solution was cooled to 0 °C and 3 µL of a 1 M solution of OsO4 (3 µmol) in acetone and 7 mg NMO (50 µmol) were added. The reaction mixture was stirred at 0 °C for one week, then saturated aqueous NaHCO₃ solution (2 mL) and saturated aqueous Na₂S₂O₃ solution (1 mL) was added and the reaction mixture was allowed to reach room temperature. Extraction with AcOEt, drying with MgSO₄ and purification by preparative TLC (diethyl ether/pentane 2:1 (v:v), silica, $R_f = 0.2$) gave 13 mg (62%) of 14. ¹H NMR (360 MHz, CDCl₃, δ rel. to TMS): 9.48 (s, 1H); 7.12 (d, br, 6.6 Hz, 1H); 5.28 (s, 1H); 4.32 (d, br, 2.2 Hz, 1H); 4.18 (ddd, 12.4 Hz, 4.4 Hz, 2.6 Hz, 1H); 3.72 (s, br, 1H); 3.47 (td, 10.6 Hz, 4.0 Hz, 1H); 2.47 (ddd, 18.6 Hz, 7.5 Hz, 4.0 Hz, 1H); 2.28-2.17 (m, 3H); 2.06 (septd, 7.1 Hz, 3.1 Hz, 1H); 1.79 (t, 12.8 Hz, 1H); 1.67 (dm, 12.8 Hz, 2H); 1.53 (dd, 12.4 Hz, 4.0 Hz, 1H); 1.28 (s, 3H); 1.10-0.8 (m, 7H, superimposed by the following signals); 1.03 (s, 3H); 0.95 (d, 6.6 Hz, 3H); 0.90 (d, 7.1 Hz, 3H); 0.76 (d, 7.1 Hz, 3H). ¹³C NMR (90.3 MHz, CDCl₃, δ rel. to TMS): 193.0; 176.0; 154.7; 138.7; 102.3; 79.0; 71.0; 65.9; 53.4; 47.6; 46.2; 41.6; 39.8; 39.6; 34.3; 33.6; 33.4; 31.5; 25.8; 24.7; 23.3; 22.7; 22.2; 21.1; 15.2; $[\alpha]_D^{20} = +27$ (c = 0.8, CHCl₃).
- (21) A typical procedure is as follows: To 10 mg of 14 (23 µmol) was added a mixture of TFA and water (1:1 v/v, 2 mL). Then 1 mL of acetone was added to dissolve 14 and the mixture was stirred at room temperature overnight. Then the mixture was evaporated to dryness at reduced pressure and the residue was purified by preparative TLC (toluene/acetone/acetic acid 70:30:1 (v/v), silica, $R_f = 0.25$). Yield: 6.8 mg (quant.). ¹H NMR (360 MHz, D_4 -methanol, δ rel. to TMS): 9.49 (s, 1H); 7.26 (d, br, J = 6.6 Hz, 1H); 5.44 (s, 1H); 4.39 (s, br, 1H); 4.14 (dd, J = 12.4Hz, 2.9 Hz, 1H); 3.77 (s, br, 1H); 2.55 (dm, J = 17.7 Hz, 1H); 2.17 (m, 1H); 1.92 (t, J = 12.4, 1H); 1.69 (dd. J = 12.8 Hz, 3.5 Hz, 1H); 1.45 (dd, J = 12.8 Hz, 4.0 Hz, 1H); 1.31 (s, 3H); 1.07 (s, 3H). ¹³C NMR (90.3 MHz, D₄methanol, δ rel. to TMS): 195.1; 178.9; 156.3; 140.3; 101.8; 72.3; 66.8; 55.5; 47.9; 42.2; 41.0; 34.4; 33.9; 25.9; 24.0. $[\delta]_D^{20} = -59$ (c = 0.1, CH₃OH); Lit.^{1b}: $[\delta]_D^{20} = -57$ (c = 0.1, CH₃OH).

Article Identifier: 1437-2096,E;2001,0,01,0087,0089,ftx,en;G22000ST.pdf