

# A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

## **Accepted Article**

Title: Chiral Carboxylic Acid-Enabled Achiral Rhodium(III)-Catalyzed Enantioselective C-H Functionalization

Authors: Luqing Lin, Seiya Fukagawa, Daichi Sekine, Eiki Tomita, Tatsuhiko Yoshino, and Shigeki Matsunaga

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201807610 Angew. Chem. 10.1002/ange.201807610

Link to VoR: http://dx.doi.org/10.1002/anie.201807610 http://dx.doi.org/10.1002/ange.201807610

## WILEY-VCH

## Chiral Carboxylic Acid-Enabled Achiral Rhodium(III)-Catalyzed Enantioselective C–H Functionalization

Luqing Lin,\* Seiya Fukagawa, Daichi Sekine, Eiki Tomita, Tatsuhiko Yoshino,\* and Shigeki Matsunaga\*

**Abstract:** We report an achiral Cp<sup>x</sup>Rh(III)/chiral carboxylic acidcatalyzed asymmetric C–H alkylation of diarylmethanamines with a diazomalonate followed by cyclization and decarboxylation to afford 1,4-dihydroisoquinolin-3(*2H*)-one. Secondary alkylamines as well as non-protected primary alkylamines underwent the transformation with high enantioselectivities (up to 98.5/1.5 er) by using a newly developed chiral carboxylic acid as the sole chiral source to achieve enantioselective C–H cleavage via a CMD mechanism.

Transition metal-catalyzed direct C-H functionalization has been investigated as an atom-[1] and step-economical<sup>[2]</sup> strategy in organic synthesis over the last few decades.<sup>[3-5]</sup> Group 9 Cp<sup>x</sup>M(III) (Cp = cyclopentadienyl, M = Co, Rh, Ir) complexes are prominent catalysts in this field due to their high reactivity and functional group compatibility.<sup>[4]</sup> Enantioselective C-H functionalization has recently attracted much attention for the synthesis of complex molecules including chiral stereocenters.<sup>[5]</sup> In this context, Cramer's group reported that Rh(III)<sup>[6]</sup> and Ir(III)<sup>[7]</sup> complexes bearing precisely designed chiral Cp<sup>x</sup> ligands enabled catalytic asymmetric C-H functionalization reactions.<sup>[8]</sup> You's group<sup>[9]</sup> and Antonchick and Waldmann's group<sup>[10]</sup> also developed different types of chiral Cp<sup>x</sup> ligands. These designed Cp<sup>x</sup> ligands greatly facilitated the development of enantioselective C-H functionalization reactions (Scheme 1a).<sup>[11]</sup> However, the derivatization of chiral Cp<sup>x</sup>M(III) catalysts for optimizing the desired reaction can potentially be problematic, although some easily accessible chiral Cp<sup>x</sup> ligands<sup>[10,12]</sup> and Cp<sup>x</sup>Rh complexes<sup>[13]</sup> were recently developed. Therefore, new approaches to achieve enantioselective C-H functionalization using more easily available achiral Cp<sup>x</sup>M(III) complexes in combination with external chiral sources are highly demanded.<sup>[14]</sup>

Our group recently developed a Cp\*Rh(III)/chiral disulfonatecatalyzed enantioselective conjugate addition of aromatic C–H bonds to enones, in which the chiral disulfonate enabled stereocontrol during the insertion step after C–H bond cleavage (Scheme 1b).<sup>[15]</sup> On the other hand, stereocontrol at the C-H bond cleavage step still requires chiral Cp<sup>x</sup> ligands.<sup>[6g,h,7b]</sup> In most cases, C–H activation under Cp<sup>x</sup>M(III) catalysis is proposed to proceed via a carboxylate-assisted concerted metalation-deprotonation (CMD) mechanism.<sup>[4,16]</sup> Accordingly, an achiral Cp<sup>x</sup>M(III)/chiral

 [a] Dr. L. Lin, S. Fukagawa, D. Sekine, E. Tomita, Dr. T. Yoshino, Prof. Dr. S. Matsunaga
 Faculty of Pharmaceutical Sciences
 Hokkaido University
 Kita-ku, Sapporo 060-0812, Japan
 E-mail: Lin.Luqing@pharm.hokudai.ac.jp;
 tyoshino@pharm.hokudai.ac.jp; smatsuna@pharm.hokudai.ac.jp
 Supporting information for this article is given via a link at the end of the document. (a) Chiral Cp<sup>x</sup>Rh(III) for enantioselective C-H functionalization



(b) Stereocontrol after C-H bond cleavage by chiral bis-sulfonate





Stereocontrol at C-H bond cleavage step using chiral carboxylic acid



carboxylic acid (CCA) hybrid system should be able to achieve asymmetric C–H activation. Although CCAs were investigated in Ir(III)-catalyzed C-H amidation reactions of phosphine oxides by Chang's group<sup>[17]</sup> and Cramer's group,<sup>[7b]</sup> a chiral Cp<sup>x</sup> ligand was still essential to obtain high selectivity.<sup>[7b]</sup> In Pd catalysis, mono-*N*-protected amino acids (MPAAs) and related ligands, mainly developed by Yu's group, are effective for asymmetric C–H activation.<sup>[18-20]</sup> However, they would not be suitable for Cp<sup>x</sup>M(III) catalyses because these ligands require at least four coordination sites, i.e., two for ligands, a directing group, and a C–H bond to

### COMMUNICATION

be cleaved,<sup>[19]</sup> while Cp<sup>x</sup>M(III) complexes have only three vacant coordination sites.[21]

report achiral Cp<sup>x</sup>Rh(III)/chiral Here we binaphthyl monocarboxylic acid hybrid catalysts for enantioselective C-H alkylation of diarylmethanamines with diazomalonate followed by cyclization and decarboxylation (Scheme 1c).[22] Both secondary and non-protected primary alkylamines functioned as a directing group in our catalytic system. Directed C-H alkylation reactions with diazo compounds are well investigated using Cp\*M(III) catalysts,<sup>[23]</sup> but Pd-catalyzed conditions have not been reported,<sup>[24]</sup> and thus the development of CCAs specifically optimized for Cp<sup>x</sup>Rh(III) is crucial to achieve this transformation.

We began our investigation by screening several types of CCAs using secondary diarylmethanamine 1a as a model substrate (Table 1).<sup>[25]</sup> The reaction conditions selected were based on those previously reported for benzylamine derivatives,[22] but Aq<sub>2</sub>CO<sub>3</sub> and CCAs were directly used instead of silver carboxylates for easy reaction setup. Two commercially available MPAAs (4a, 4b) were selected for the initial trials (entries 1, 2). The desired product 3a was obtained in moderate yield after Krapcho decarboxylation, but the enantioselectivity was low in both cases. We next focused on CCAs based on a binaphthyl backbone. As the simple binaphthyl monocarboxylic acid 5a<sup>[26]</sup> exhibited almost no enantioselectivity (entry 3), we considered that increasing the steric hindrance around the carboxylic acid mojety would improve the enantioselectivity. CCA 5b. with a phenyl group at the 2'-position, resulted in 37/63 er (entry 4), partially supporting our assumption. Therefore, we next screened binaphthyl carboxylic acids with a diaryl phosphine oxide group, which is bulky and easy to modify, at the 2'-position (6).[27] As expected, the addition of 6a delivered 3a in good yield with moderate enantioselectivity (entry 5, 75.5/24.5 er). The aryl groups on the phosphine oxide (6b, 6c) had only minor effects on the selectivity (entries 6, 7). To further increase the steric hindrance, a 3,5-di-tert-butyl-4-methoxy-phenyl (DTBM) group was introduced at the ortho-position of the carboxylic acid by directed C-H arylation (6d, 6e).[28] The use of 6d dramatically improved the selectivity to 94.5/5.5 er with a modest yield (entry 8). Changing the 3,5-bis(trifluoromethyl)phenyl groups of 6d to 3,4,5-trifluorophenyl groups (6e, entry 9) increased both the yield and selectivity. With the optimized CCA 6e, we briefly examined the effects of Cp<sup>x</sup> ligands (entries 10-12). While a slightly less hindered Cp<sup>Me4</sup> ligand afforded almost the same selectivity and reactivity (entry 10), sterically more hindered ligands exhibited lower reactivity and enantioselectivity (entries 11, 12). We also investigated other silver sources, but only very low yields were observed when using AgOTf or AgSbF<sub>6</sub> (entries 13, 14). Thus, the reaction conditions in entry 9 were identified to be optimal. We performed several control experiments to elucidate the importance of each component of the catalytic system (entry 15-18). The desired reaction did not proceed without [Cp\*RhCl2]2 or 6e (entry 15, 16). The use of ester 6f instead of carboxylic acid 6e afforded no desired product (entry 17), indicating that the carboxylic acid moiety is essential. On the other hand, the product was obtained when Ag<sub>2</sub>CO<sub>3</sub> was omitted, albeit in lower yield (entry 18).

We next investigated the substrate scope of the secondary diarylmethanamines 1 (Scheme 2). Substrates 1a-1h bearing an electron-withdrawing group or electron-donating group at the

Table 1. Screening of Chiral Carboxylic Acids and Optimization of Reaction Conditions<sup>[a]</sup>

| Mes                                                                                                                                                                                                                             |                                                      | $\begin{array}{c} N_2 \\ \downarrow \\ 1) \\ MeO_2C \\ CO_2Me \\ [Cp^*RhCl_2]_2 \\ (2.5 mol \%) \\ 1 \\ \dots \\$ |                                 |                      |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-----------|
| $\wedge$                                                                                                                                                                                                                        | NH<br>NH                                             | [Ag] (12<br>CCA (12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mol %)<br>2 mol %)              | Me                   | N N       |
|                                                                                                                                                                                                                                 | ) []                                                 | MeOH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 °C, 18 h                     |                      | H I       |
| <b>1a</b> 2) LiCl, H <sub>2</sub> O, DMSO F <b>3a</b> F 130 °C, 3 h                                                                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |           |
| Entry                                                                                                                                                                                                                           | [Cp <sup>x</sup> RhCl <sub>2</sub> ] <sub>2</sub>    | CCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [Ag]                            | Yield <sup>[b]</sup> | Er        |
| 1                                                                                                                                                                                                                               | [Cp*RhCl2]2                                          | 4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 63%                  | 43.5/56.5 |
| 2                                                                                                                                                                                                                               | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 4b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Ag_2CO_3$                      | 61%                  | 54/46     |
| 3                                                                                                                                                                                                                               | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 43%                  | 49.5/50.5 |
| 4                                                                                                                                                                                                                               | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 5b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 20%                  | 37/63     |
| 5                                                                                                                                                                                                                               | [Cp*RhCl2]2                                          | 6a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 67%                  | 75.5/24.5 |
| 6                                                                                                                                                                                                                               | [Cp*RhCl2]2                                          | 6b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 56%                  | 70.5/29.5 |
| 7                                                                                                                                                                                                                               | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 6c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 82%                  | 71/29     |
| 8                                                                                                                                                                                                                               | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 6d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 54%                  | 94.5/5.5  |
| 9                                                                                                                                                                                                                               | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 84% <sup>[c]</sup>   | 96/4      |
| 10                                                                                                                                                                                                                              | [Cp <sup>Me4</sup> RhCl <sub>2</sub> ] <sub>2</sub>  | 6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Ag_2CO_3$                      | 80% <sup>[c]</sup>   | 96/4      |
| 11                                                                                                                                                                                                                              | [Cp* <sup>fBu</sup> RhCl <sub>2</sub> ] <sub>2</sub> | 6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Ag_2CO_3$                      | 34%                  | 91/9      |
| 12                                                                                                                                                                                                                              | [Cp <sup>Et</sup> RhCl <sub>2</sub> ] <sub>2</sub>   | 6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Ag_2CO_3$                      | 51%                  | 93.5/6.5  |
| 13                                                                                                                                                                                                                              | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AgOTf                           | 19%                  | 95/5      |
| 14                                                                                                                                                                                                                              | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AgSbF <sub>6</sub>              | 15%                  | 95/5      |
| 15                                                                                                                                                                                                                              | -                                                    | 6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 0%                   | -         |
| 16                                                                                                                                                                                                                              | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ag <sub>2</sub> CO <sub>3</sub> | 0%                   | -         |
| 17                                                                                                                                                                                                                              | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 6f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag <sub>2</sub> CO <sub>3</sub> | 0%                   | -         |
| 18                                                                                                                                                                                                                              | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>                 | 6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                               | 63%                  | 96/4      |
| chiral carboxylic acid (CCA)                                                                                                                                                                                                    |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |           |
| N-Acetyl-D-valine (4a)                                                                                                                                                                                                          |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |           |
| Fmoc-Leu-OH (4b)                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |           |
|                                                                                                                                                                                                                                 | Ar <sup>1</sup>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | 5a                   | : R = OMe |
| <b>5b</b> : $R = Ph$<br>R = H                                                                                                                                                                                                   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |           |
| <b>6b</b> : Ar <sup>1</sup> = 4-MeO-C <sub>6</sub> H <sub>4</sub> , Ar <sup>2</sup> = H, R = H<br><b>6c</b> : Ar <sup>1</sup> = 3.5-(CF <sub>2</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>2</sub> , Ar <sup>2</sup> = H, R = H |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |           |
| <b>6d:</b> $Ar^1 = 3.5 \cdot (CF_3)_2 \cdot C_6 H_3$                                                                                                                                                                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |           |
| $Ar^{2} \qquad 6e: Ar^{1} = 3,4,5-F_{3}-C_{6}H_{2}$                                                                                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |           |
| Ar <sup>2</sup> = 3,5- <i>t</i> Bu <sub>2</sub> -4-MeO-C <sub>6</sub> H <sub>2</sub> , R = H<br><b>6e</b> : Ar <sup>1</sup> = 3,4,5-F <sub>3</sub> -C <sub>6</sub> H <sub>2</sub>                                               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |           |



[a] See Supporting Information for the general conditions. [b] Determined by <sup>1</sup>H NMR analysis of the crude mixture. [c] Isolated yields

para-position were efficiently converted to the corresponding products 3a-3h with high enantioselectivities (91.5/8.5-96/4 er). The sterically less hindered C-H bond was selectively

### COMMUNICATION



**Scheme 2.** Substrate Scope of Secondary Diarylmethanamines. See Supporting Information for the general conditions. [a] [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (1 mol %), Ag<sub>2</sub>CO<sub>3</sub> (2.4 mol %), **6e** (4.8 mol %) were used. [b] [Cp<sup>Me4</sup>RhCl<sub>2</sub>]<sub>2</sub> was used instead of [Cp\*RhCl<sub>2</sub>]<sub>2</sub>. [c] AgOTf (12 mol %) was used instead of Ag<sub>2</sub>CO<sub>3</sub>.

functionalized to furnish 3i and 3j in 98.5/1.5 er and 95.5/4.5 er, respectively, while a meta-fluorine-substituted substrate 1k reacted selectively at the more acidic C-H bond ortho to the fluorine, providing 3k in 66% yield and 90.5/9.5 er. A substrate with two enantiotopic naphthyl groups 11 and a tricyclic amine 1m products also afforded the (**3I**, 3m) with good enantioselectivities.<sup>[29]</sup> For several substrates, the use of [Cp<sup>Me4</sup>RhCl<sub>2</sub>]<sub>2</sub> instead of [Cp\*RhCl<sub>2</sub>]<sub>2</sub> and AgOTf instead of Ag<sub>2</sub>CO<sub>3</sub> was slightly beneficial to obtain higher enantioselectivity. Even when the catalyst loading was decreased to 1 mol % of [Cp\*RhCl<sub>2</sub>]<sub>2</sub> and 4.8 mol % of 6e using 1a as a substrate, the enantioselectivity was maintained (96/4 er) with moderate yield.

Our Cp<sup>x</sup>Rh(III)/CCA catalytic system was successfully applied not only to secondary amines **1**, but also to primary amines **7** (Scheme 3). Non-protected primary alkyl amines are common and synthetically attractive functional groups, but their use as directing groups in C–H functionalization is challenging, probably due to their strong coordinating ability leading to catalyst deactivation.<sup>[30]</sup> To our delight, non-protected primary amines **7** exhibited good reactivity and enantioselectivity under the optimal conditions. Substrates bearing various substituents afforded product **8a–8g** in 55%–79% yields with 90/10–97/3 enantioselectivities.<sup>[31]</sup> A substrate with a methyl group at the  $\alpha$ position of the nitrogen was also applicable to give product **8h** in 90% yield and 90/10 er.



**Scheme 3.** Primary Non-Protected Amines as Substrates. See Supporting Information for the general conditions. [a] [Cp<sup>Me4</sup>RhCl<sub>2</sub>]<sub>2</sub> was used instead of [Cp<sup>'</sup>RhCl<sub>2</sub>]<sub>2</sub>. [b] AgOTf (12 mol %) was used instead of Ag<sub>2</sub>CO<sub>3</sub>.

In conclusion, we developed an achiral Cp<sup>x</sup>Rh(III)/CCA-C–H catalvzed enantioselective functionalization of diarylmethanamines, including non-protected primary amines, to afford potentially bioactive 1,4-dihydroisoquinolin-3(2H)-ones[32] (see Supporting Information for a proposed catalytic cycle). Enantioselective C–H bond cleavage via a CMD mechanism was achieved using a newly developed binaphthyl-based chiral monocarboxylic acid as the sole chiral source. The developed CCAs will be useful for further development of reactions involving enantioselective C-H activation and protonation under Cp<sup>x</sup>M(III) and other transition metal catalyses. Furthermore, their synergic effects with chiral Cp<sup>x</sup>M(III) catalysts will be promising for achieving highly enantioselective transformations.

#### Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number JP15H05802 in Precisely Designed Catalysts with Customized Scaffolding, JSPS KAKENHI Grant Number JP18H04637 in Hybrid Catalysis, JSPS KAKENHI Grant Number JP17H03049, JP17K15417, and JP16F16409, JST ACT-C Grant Number JPMJCR12Z6, and The Asahi Glass Foundation and Naito Foundation (S.M.).

**Keywords:** C-H activation • asymmetric catalysis • rhodium • amine • chiral carboxylic acid

- [1] B. M. Trost, Science 1991, 254, 1471-1477.
- [2] P. A. Wender, B. L. Miller, Nature 2009, 460, 197-201.
- Selected recent reviews on C-H functionalization: a) T. Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, *Chem. Soc. Rev.* 2016, *45*, 2900-2936; b) W. Ma, P. Gandeepan, J. Li, L. Ackermann, *Org. Chem. Front.* 2017, *4*, 1435-1467; c) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, *Chem. Rev.* 2017, *117*, 8754-8786; d) J. R. Hummel, J. A. Boerth, J. A. Ellman, *Chem. Rev.* 2017, *117*, 9163-9227; e) Y. Park, Y. Kim, S. Chang, *Chem. Rev.* 2017, *117*, 9247-9301; f) R. R. Karimov, J. F. Hartwig, *Angew. Chem.* 2018, *130*, 4309-4317; *Angew. Chem. Int. Ed.*

### COMMUNICATION

**2018**, *57*, 4234-4241; g) P. Y. Choy, S. M. Wong, A. Kapdi, F. Y. Kwong, *Org. Chem. Front.* **2018**, *5*, 288-321; i) Y. Xu, G. Dong, *Chem. Sci.* **2018**, *9*, 1424-1432.

- [4] Selected reviews on Cp<sup>\*</sup>M(III)-catalyzed C–H functionalization: a) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212-11222; b) N. Kuhl, N. Schröder, F. Glorius, Adv. Synth. Catal. 2014, 356, 1443-1460; c) G. Song, X. Li, Acc. Chem. Res. 2015, 48, 1007-1020; d) M. Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498-525; e) S. Wang, S.-Y. Chen, X.-Q. Yu, Chem. Commun. 2017, 53, 3165-3180; f) T. Yoshino, S. Matsunaga, Adv. Synth. Catal. 2017, 359, 1245-1262; g) J. Park, S. Chang, Chem. Asian. J. 2018, 13, 1089-1102; h) A. Peneau, C. Guillou, L. Chabaud, Eur. J. Org. Chem. 2018, DOI: 10.1002/ejoc.201800298.
- [5] Selected reviews on asymmetric C–H functionalization: a) B. Ye, N. Cramer, Acc. Chem. Res. 2015, 48, 1308-1318; b) C. G. Newton, D. Kossler, N. Cramer, J. Am. Chem. Soc. 2016, 138, 3935-3941; c) Y.-M. Cui, Y. Lin, L.-W. Xu, Coord. Chem. Rev. 2017, 330, 37-52; d) D.-W. Gao, Q. Gu, C. Zheng, S.-L. You, Acc. Chem. Res. 2017, 50, 351-365; e) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908-8976; f) T. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, Science 2018, 359, eaa04798.
- [6] a) B. Ye, N. Cramer, Science 2012, 338, 504-506; b) B. Ye, N. Cramer, J. Am. Chem. Soc. 2013, 135, 636-639; c) B. Ye, P. A. Donets, N. Cramer, Angew. Chem. 2014, 126, 517-521; Angew. Chem. Int. Ed. 2014, 53, 507-511; d) B. Ye, N. Cramer Angew. Chem. 2014, 126, 8030-8033; Angew. Chem. Int. Ed. 2014, 53, 7896-7899; e) B. Ye, N. Cramer, Synlett 2015, 26, 1490-1495; f) M. V. Pham, N. Cramer, Chem. Eur. J. 2016, 22, 2270-2273; g) Y. Sun, N. Cramer, Angew. Chem. 2017, 129, 370-373; Angew. Chem. Int. Ed. 2017, 56, 364-367; h) Y. Sun, N. Cramer, Chem. Sci. 2018, 9, 2981-2985.
- a) M. Dieckmann, Y.-S. Jang, N. Cramer, Angew. Chem. 2015, 127, 12317-12320; Angew. Chem. Int. Ed. 2015, 54, 12149-12152; b) Y.-S. Jang, M. Dieckmann, N. Cramer, Angew. Chem. 2017, 129, 15284-15288; Angew. Chem. Int. Ed. 2017, 56, 15088-15092.
- [8] Other reports using Cramer's chiral Cp<sup>x</sup>Rh(III) complexes: a) S. R. Chidipudi, D. J. Burns, I. Khan, H. W. Lam, *Angew. Chem.* **2015**, *127*, 14181-14185; *Angew. Chem. Int. Ed.* **2015**, *54*, 13975-13979; b) T. J. Potter, D. N. Kamber, B. Q. Mercado, J. A. Ellman, *ACS Catal.* **2017**, *7*, 150-153.
- a) J. Zheng, S.-B. Wang, C. Zheng, S.-L. You, *J. Am. Chem. Soc.* 2015, 137, 4880-4883; b) J. Zheng, S.-B. Wang, C. Zheng, S.-L. You, *Angew. Chem.* 2017, 129, 4611-4615; *Angew. Chem. Int. Ed.* 2017, 56, 4540-4544.
- [10] Z.-J. Jia, C. Merten, R. Gontla, C. G. Daniliuc, A. P. Antonchick, H. Waldmann, *Angew. Chem.* **2017**, *129*, 2469-2474; *Angew. Chem. Int. Ed.* **2017**, *56*, 2429-2434.
- [11] A different approach based on protein engineering: T. K. Hyster, L. Knörr, T. R. Ward, T. Rovis, *Science* **2012**, *338*, 500-503.
- [12] a) D. Kossler, N. Cramer, Chem. Sci. 2017, 8, 1862-1866; b) S.-G. Wang,
  S. H. Park, N. Cramer, Angew. Chem. 2018, 130, 5557-5560; Angew.
  Chem. Int. Ed. 2018, 57, 5459-5462.
- [13] E. A. Trifonova, N. M. Ankudinov, A. A. Mikhaylov, D. A. Chusov, Y. V. Nelyubina, D. S. Perekalin, *Angew. Chem.* **2018**, *130*, 7840-7844; *Angew. Chem. Int. Ed.* **2018**, *57*, 7714-7718.
- [14] He and co-workers reported an achiral Cp\*Rh(III) catalyst combined with chiral amino acid-attached LDHs can control enantioselectivity, but the observed selectivity was only 53.5/46.5 er. H. Liu, Z. An, J. He, ACS Catal. 2014, 4, 3543-3550.
- [15] S. Satake, T. Kurihara, K. Nishikawa, T. Mochizuki, M. Hatano, K. Ishihara, T. Yoshino, S. Matsunaga, *Nat. Catal.* 2018, DOI: 10.1038/s41929-018-0106-5.
- a) D. Lapointe, K. Fagnou, *Chem. Lett.* **2010**, 39, 1118-1126; b) L.
  Ackermann, *Chem. Rev.* **2011**, *111*, 1315-1345; c) D. L. Davies, S. A.
  Macgregor, C. L. McMullin, *Chem. Rev.* **2017**, *117*, 8649-8709.
- [17] D. Gwon, S. Park, S. Chang, Tetrahedron 2015, 71, 4504-4511.
- [18] Selected examples of Pd catalyzed asymmetric C–H activation using MAPPs and related ligands: a) B.-F. Shi, N. Maugel, Y.-H. Zhang, J.-Q.

Yu, Angew. Chem. 2008, 120, 4960-4964; Angew. Chem. Int. Ed. 2008, 47, 4882-4886; b) B.-F. Shi, Y.-H. Zhang, J. K. Lam, D.-H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 460-461; c) K.-J. Xiao, D. W. Lin, M. Miura, R.-Y. Zhu, W. Gong, M. Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2014, 136, 8138-8142; d) C. He, M. J. Gaunt, Angew. Chem. 2015, 127, 16066-16070; Angew. Chem. Int. Ed. 2015, 54, 15840-15844; e) D.-W. Gao, Q. Gu, S.-L. You, J. Am. Chem. Soc. 2016, 138, 2544-2547; f) F.-L. Zhang, K. Hong, T.-J. Li, H. Park, J.-Q. Yu, Science 2016, 351, 252-256; g) G. Chen, W. Gong, Z. Zhuang, M. S. Andrä, Y.-Q. Chen, X. Hong, Y.-F. Yang, T. Liu, K. N. Houk, J.-Q.Yu, Science 2016, 353, 1023-1027; h) Q.-F. Wu, P.-X. Shen, J. He, X.-B. Wang, F. Zhang, Q. Shao, R.-Y. Zhu, C. Mapelli, J. X. Qiao, M. A. Poss, J.-Q. Yu, Science 2017, 355, 499-503; i) P.-X. Shen, L. Hu, Q. Shao, K. Hong, J.-Q. Yu J. Am. Chem. Soc. 2018, 140, 6545-6549.

- [19] Mechanistic studies on Pd/MPAA-catalyzed C–H functionalization: a) G.-J. Cheng, Y.-F. Yang, P. Liu, P. Chen, T.-Y. Sun, G. Li, X. Zhang, K. N. Houk, J.-Q. Yu, Y.-D. Wu, *J. Am. Chem. Soc.* 2014, *136*, 894-897; b) D. G. Musaev, T. M. Figg, A. L. Kaledin, *Chem. Soc. Rev.* 2014, *43*, 5009-5031; c) G.-J. Cheng, P. Chen, T.-Y. Sun, X. Zhang, J.-Q. Yu, Y.-D. Wu, *Chem. Eur. J.* 2015, *21*, 11180-11188; d) B. E. Haines, J.-Q. Yu, D. G. Musaev, *ACS Catal.* 2017, 7, 4344-4354.
- [20] Chiral phosphoric acids and amides were also used for enantioselective C-H cleavage in Pd catalysis: a) S.-B. Yan, S. Zhang, W.-L. Duan, Org. Lett. 2015, 17, 2458-2461; b) H. Wang, H.-R. Tong, G. He, G. Chen, Angew. Chem. 2016, 128, 15613-15617; Angew. Chem. Int. Ed. 2016, 55, 15387-15391; c) P. Jain, P. Verma, G. Xia, J.-Q. Yu, Nat. Chem. 2017, 9, 140-144; d) A. P. Smalley, J. D. Cuthbertson, M. J. Gaunt, J. Am. Chem. Soc. 2017, 139, 1412-1415; e) L. Yang, R. Melot, M. Neuburger, O. Baudoin, Chem. Sci. 2017, 8, 1344-1349; f) S.-Y. Yan, Y.-Q. Han, Q.-J. Yao, X.-L. Nie, L. Liu, B.-F. Shi, Angew. Chem. 2018, 130, 9231-9235; Angew. Chem. Int. Ed. 2018, 57, 9093-9097.
- [21] An amino acid derivative was used for enantioselective protodemetalation, although only low enantioselectivity (63:37 er) was obtained: D. Zell, M. Bursch, V. Müller, S. Grimme, L. Ackermann, Angew. Chem. 2017, 129, 10514-10518; Angew. Chem. Int. Ed. 2017, 56, 10378-10382.
- [22] Racemic reactions: W.-W. Chan, S.-F. Lo, Z. Zhou, W.-Y. Yu, J. Am. Chem. Soc. 2012, 134, 13565-13568.
- [23] Y. Xia, D. Qiu, J. Wang, *Chem. Rev.* **2017**, *117*, 13810-13889.
- [24] Pd-catalyzed non-directed coupling of allylic C–H bonds with diazo compound: P.-S. Wang, H.-C. Lin, X.-L. Zhou, L.-Z. Gong, Org. Lett. 2014, 16, 3332-3335.
- [25] Our trials using chiral phosphoric acids afforded low enantioselectivities. See Supporting Information.
- [26] J. J. V. Veldhuizen, S. B. Garber, J. S. Kingsbury, A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124, 4954-4955.
- [27] 6a and 6b were reported as intermediates for bidentate *P*,*N*-ligands: a) M. Ogasawara, K. Yoshida, H. Kamei, K. Kato, Y. Uozumi, T. Hayashi, *Tetrahedron: Asymmetry* 1998, 9, 1779-1787; b) Q.-Y. Zhao, M. Shi, *Tetrahedron* 2011, 67, 3724-3732.
- [28] A. Biafora, T. Krause, D. Hackenberger, F. Belitz, L. J. Gooßen, Angew. Chem. 2016, 128, 14972-14975; Angew. Chem. Int. Ed. 2016, 55, 14752-14755.
- [29] The use of diethyl diazomalonate and diisopropyl diazomalonate instead of dimethyl diazomalonate 2 resulted in lower yields and/or lower selectivities. See Supporting Information for the details.
- [30] a) D. Willcox, B. G. N. Chappell, K. F. Hogg, J. Calleja, A. P. Smalley, M. J. Gaunt, *Science* 2016, *354*, 851-857; b) A. Lazareva, O. Daugulis, *Org. Lett.* 2006, *8*, 5211-5213; c) Y. Xu, M. C. Young, C. Wang, D. M. Magness, G. Dong, *Angew. Chem.* 2016, *128*, 9230-9233; *Angew. Chem. Int. Ed.* 2016, *55*, 9084-9087; d) Y. Liu, H. Ge, *Nat. Chem.* 2017, *9*, 26-32; e) Y. Wu, Y.-Q. Chen, T. Liu, M. D. Eastgate, J.-Q. Yu, *J. Am. Chem. Soc.* 2016, *138*, 14554-14557; f) A. Yada, W. Liao, Y. Sato, M. Murakami, *Angew. Chem.* 2017, *129*, 1093-1096; *Angew. Chem. Int. Ed.* 2017, *56*, 1073-1076.

## COMMUNICATION

- [31] For determination of the absolute configuration of **8a**, see Supporting Information.
- [32] K. W. Bentley, The Isoquinoline Alkaloids, Vol. 1, Hardwood Academic, Amsterdam, The Netherlands, 1998.

Accepted Manuscrip

## COMMUNICATION

#### **Entry for the Table of Contents**

#### COMMUNICATION

Enantioselective C–H activation/functionalization was achieved using an achiral CpxRh(III) catalyst with a newly developed binaphthyl monocarboxylic acid as the sole chiral source. Both secondary and primary diarylmethanamines reacted with a diazomalonate under the Cp<sup>x</sup>Rh(III)/chiral carboxylic acid hybrid catalysis give 1,4to dihydroisoquinolin-3(2H)-ones in high enantioselectivity.



Luqing Lin,\* Seiya Fukagawa, Daichi Sekine, Eiki Tomita, Tatsuhiko Yoshino,\* and Shigeki Matsunaga\*

#### Page No. – Page No.

Chiral Carboxylic Acid-Enabled Achiral Rhodium(III)-Catalyzed Enantioselective C-H Functionalization