Sukzessive Ringmethylierung von α-Piperidino-oximen durch wiederholte Zwei-Stufen-Reaktion⁺⁾

Hans Möhrle* und Michael Gehlen

Institut für Pharmazeutische Chemie der Universität Düsseldorf, Universitätsstr. 1, 4000 Düsseldorf 1

Eingegangen am 15. April 1991

Durch Dehydrierung von α -Piperidino-acetophenonoximen mit Hg(II)-ED-TA und konsekutive *Grignard*-Reaktion gelingt die stufenweise Ringmethylierung des Piperidin-Cyclus unter Konfigurationserhalt sowohl bei den *E*als auch den Z-konfigurierten Isomeren. Die Ringverknüpfung der bicyclischen Oxidationsprodukte läßt sich anhand der ¹³C-NMR-Daten ermitteln.

Successive Ring Methylation of α -Piperidino-oximes by Repetitive Two-Step-Reaction

Dehydrogenation of α -piperidino-acetophenonoximes with Hg(II)-edta, followed by *Grignard* reaction, succeeds in the stepwise ring methylation of the piperidine moiety, both *E*- and *Z*-isomers retaining their configurations. The kind of ring connection of the bicyclic products is determined by ¹³C-NMRdata.

Schema 1

Kürzlich konnten wir zeigen¹⁾, daß sich das bicyclische α -Aminonitron 1 bei verschiedenen Reaktionen wie eine maskierte Iminium-Verbindung verhält. So lieferten z.B. dessen Umsetzungen mit *Grignard*-Reagenzien die 2-substituierten Piperidin-Oxime 3 und 4.

Dies legt eine zumindest intermediär existente Iminium-Oximat-Spezies 2 nahe, die konfigurationsverschieden grundsätzlich auch aus Oxadiazinen zu formulieren ist.

Deshalb sollte das Dihydrooxadiazin 6 als Modellsubstanz eingesetzt werden. Während jedoch cyclische Nitrone durch Hg(II)-EDTA-Dehydrierung aus den entspr. *E*-Oxim-Aminen leicht zu gewinnen waren, wurde unter Standardbedingungen aus dem Z-Oxim 5 mit Hg(II)-EDTA nur das zugehörige Lactam 8 erhalten².

Das führte zu der Annahme, daß zwar intermediär das Dihydrooxadiazin 6 entsteht, nach dessen schneller Weiterdehydrierung aufgrund stereoelektronischer Bedingungen aber nur das Lactam 8 isoliert werden kann. Indessen zeigte sich nunmehr, daß durch Verkürzung der Reaktionszeit und Verminderung des Reagenzüberschusses das Oxadiazin 6 erstmals zugänglich wurde. Dabei ergab die ¹H-NMR-spektroskopische Untersuchung überraschenderweise, daß diese Verbindung - zumindest in CDCl₃ nicht wie erwartet in der *trans*-verknüpften Form vorliegt, sondern ein *cis*-Derivat darstellt. Dies geht aus dem Signal für das anguläre Proton 9a-H hervor, das aufgrund der Bandenbreite nur eine equatoriale Position einnehmen kann.

Die Umsetzung von 6 mit Grignard-Reagenzien ergab auch hier eine Ringöffnung unter Substitution des Piperidinrings zu 9 und 10, die mit den unabhängig synthetisierten Verbindungen¹⁾ identisch sind. Eine partielle Umlagerung zu den E-Oxim-Isomeren erfolgt praktisch nicht, wie sich

⁺⁾ Herrn Prof. Dr. Horst H.A. Linde mit den besten Wünschen zum 60. Geburtstag gewidmet.

©VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1992

Schema 3

durch HPLC mit authentischen Substanzen nachweisen läßt. Auch bei der Derivatisierung zu den entspr. Carbamidsäureestern 11 und 12 weist jeweils ein einfacher Signalsatz im NMR-Spektrum auf den Konfigurationserhalt hin.

Ähnlich wie das Oxim 3 durch Hg(II)-EDTA wieder zum angulär substituierten Nitron 15 cyclisiert wird¹⁾, so generiert auch das Z-Isomer 9 unter gleichen Bedingungen das Oxadiazin 13.

Deshalb erhebt sich die Frage, ob durch abwechselnde Umsetzung von Amino-acetophenonoximen mit Hg(II)-ED-TA und magnesiumorganischen Reagenzien höher substituierte Oxime, Nitrone und Dihydrooxadiazine darzustellen sind.

Tatsächlich verlief der erneute Versuch einer substituierenden Ringspaltung von 13 und 15 durch Grignardierung in beiden Fällen erfolgreich mit Ausbeuten um 70%, die damit in der Größenordnung der Umsetzungen nicht methylsubstituierter Edukte liegen. Offensichtlich bedeutet also die anguläre Methylgruppe keine sterische Hinderung. Die Struktur der isomeren Amino-oxime 14 und 16 wurde durch folgende unabhängige Synthese gesichert (s. Schema 5).

Eine Trennung des *E*/Z-Isomerengemisches erfolgte durch SC und ergab die Identität mit den *Grignard*-Produkten. Die Zuordnung der Oxim-Konfiguration ließ sich ¹³C-NMRspektroskopisch³⁾ problemlos durchführen.

Tab. 1: Chemische Verschiebungen der α-Kohlenstoffe in den ¹³C-NMR-Spektren der synthetisierten Amino-acetophenonoxime

δ/ppm	3	9	4	10	16	14	
CDCl ₃	57.53	54.55	58.89	54.68	53.94	50.87	
DMSO-d6	57.32	47.42	58.45	48.53	53.36	43.47	

Die weitere Alkylierung des dimethylierten Piperidin-Z-Oxims 14 geht über folgende Stufen bis zum 2,2,6,6-Tetramethylpiperidin-Derivat 24 (s. Schema 6).

Die Umsetzungen verliefen einheitlich und führten in guten Ausbeuten zu den gewünschten Produkten.

Das ¹H-NMR-Spektrum von **21** erlaubt eine sichere Konformationsbestimmung dieses Dihydrooxadiazin-Derivates. Ermöglicht wird dies wieder durch das Signal des Wasserstoffatoms an der Verknüpfungsstelle des bicyclischen Systems. Es erscheint bei der ¹H-Kernresonanzmessung als nicht ganz aufgelöstes Triplett mit einer Kopplungskonstanten von etwa 4 Hz. Damit ist die equatoriale Stellung des angulären Protons bewiesen, was nur mit einem *cis*-verknüpften Pyrido[1,2-*e*]oxadiazin-Gerüst in Einklang zu bringen ist.

Schema 5 20

Die Darstellung des Tetramethylpiperidin-Z-Oxims 29 nimmt einen ähnlichen Weg (s. Schema 7).

Das Nitron 28 wurde wegen seiner schlechten Kristallisationseigenschaften in das ringoffene Perchlorat überführt und charakterisiert. Im ¹H-NMR-Spektrum in DMSO-d₆ zeigt sich nach D₂O-Zusatz aufgrund des Prototropiegleichgewichts ein sukzessiver Einbau von Deuterium. Nach 48 h hat ein weitgehender Austausch der fünf Protonen in β -Stellung über die tautomeren Enamin-Strukturen 30 und 31 stattgefunden.

Bei den angulär methylsubstituierten Bicyclen ist die Ringverknüpfung praktisch nur mit Hilfe von ¹³C-NMR-Spektren zu ermitteln.

Vergleicht man die shift-Werte für die Nitrone 1 und 15, so ist insbesondere im Piperidinanteil praktisch keine Hochfeldverschiebung festzustellen, weshalb keine γ -Effekte⁴⁾ einer Methylgruppe vorliegen können. Dies ist aber nur bei einer in bezug auf den Piperidinring equatorial angeordneten Methylgruppe der Fall. Eine Bestätigung hierfür liefert das ¹³C-NMR-Spektrum des Nitrons 26, das als Diastereomerengemisch vorliegt, was am Auftreten eines doppelten Signalsatzes manifest wird. Die Zuordnung der shift-Werte läßt erkennen, daß bei dem Diastereomer 26-trans mit axial ständiger Methylgruppe ein deutlicher γ -Effekt auf C-3 und C-5 erfolgt. Das Diastereomer **26**-*cis* entspricht dagegen in der räumlichen Anordnung der Methylgruppe und damit auch der Ringverknüpfung dem Nitron **15**.

Bestätigt wird die equatoriale Stellung des Methylrestes in 5-Position durch den Vergleich mit den 4-Methylchinolizidinen^{5,6)}, wo die equatoriale Methylgruppe bei 20.8 ppm, die axiale aber bei 9.7 ppm in Resonanz tritt.

Auch beim Oxadiazin 13 ermöglicht die Gegenüberstellung von ¹³C-NMR-Daten Aussagen zur Stereochemie.

So wird für die anguläre Methylgruppe in Porantheridin (32), die equatorial bezüglich des Piperidinrings steht, eine

Resonanzlage von 23.8 ppm bestimmt¹. Das Alkaloid enthält - ähnlich wie 13 - eine N.O-Acetal-Struktur als Teil eines anellierten Oxazin-Systems, so daß die vergleichbare chemische Verschiebung des CH3-Substituenten am Brückenkopf von 13 (23.3 ppm) ebenfalls eine equatoriale Anordnung vermuten läßt. Für die hieraus resultierende cis-Verknüpfung der bicyclischen Mannichbase 13 spricht auch, daß die Resonanzlagen von C-4, C-6 und C-8 verglichen mit denen des nicht methylierten Derviates 6 keine signifikanten Verschiebungsdifferenzen aufweisen. Durch das axial ständige Sauerstoffatom in 6 werden zwar ebenfalls y-Effekte verursacht, doch liegen diese an Verbindungen des gleichen Ringsystems⁸⁾ in einer Größenordnung von 2-3 ppm, so daß bei einem axialen Methylsubstituenten in 13 dennoch deutliche Auswirkungen auf die chemischen Verschiebungen der entsprechenden C-Atome zu erwarten wären.

Dem Fonds der Chemischen Industrie danken wir für die Unterstützung unserer Arbeiten.

Experimenteller Teil

Schmp. Linström unkorr.- IR: Perkin-Elmer-Spektralphotometer 177.-NMR: Hitachi/Perkin-Elmer R-24B; Varian FT-80A.- MS: Finnigan 3500, Ionisierungsenergie 70 eV, Verdampfungstemp. in Klammern.

Weitere exp. Angaben, insbesondere spektroskopische Daten, vgl.9).

(Z)-1-Phenyl-2-piperidino-ethanonoxim (5)

a) Aus 56.9 g (0.28 mol) 1-Phenyl-2-piperidino-ethanon und Hydroxylammoniumchlorid¹⁰⁾. b) analog Lit.¹⁾ (AAV B) aus 0.41 g (1.9 mmol) 6 und 0.2 g (5.3 mmol) NaBH₄. c) aus 4.1 g (19 mmol) 6 und 1.0 g (26 mmol) LiAlH₄: Nach einstdg. Rühren wird vorsichtig mit soviel Wasser versetzt, daß die graue Farbe des überschüssigen LiAlH₄ gerade verschwindet. Anschließend saugt man ab und wäscht den Rückstand mit Ether. Die vereinigten Filtrate werden über Na_2SO_4 getrocknet, i.Vak. zur Trockne eingeengt und umkristallisiert. Ausb. a) 18.5 g (30%), b) 0.28 g (68%), c) 2.8 g (68%). Schmp. 119-120°C (Lit.¹⁰⁾: 119-120°C).

3-Phenyl-4,6,7,8,9,9a-hexahydro-pyrido[1,2-e]-1,2,5-oxadiazin(6)

Nach Lit.¹⁾ (AAV C) aus 2.18 g (10 mmol) 5; LM: 40 ml Ethanol/Wasser (1+1). Hg-Abscheidung: 2 g (100% bezogen auf 2 Oxid.-Äquiv.). Reinigungssäule: Al₂O₃, neutral, Akt. I; Länge 3 cm, Ø 2.2 cm, CH₂Cl₂. Farblos Kristalle aus Methanol vom Schmp. 97°C Ausb. 1.40 g (65%).- IR (KBr): 3050 w, 2940 s, 2890 w, 2860 vw, 2830 w, 1590 w, 1490 m cm⁻¹.-MS (90°C): m/z (rel.Int./%) = 216 (20; M⁺), 199 (17), 103 (67), 97 (100), 84 (21), 77 (33), 42 (43).- ¹H-NMR (CDCl₃): δ (ppm) = 7.72-7.49 (m, 2H, ortho-H), 7.46-7.28 (m, 3H, restl. aromat. H), 4.55 (''d'', 1H, 9a-H; ''J'' = 3.7 Hz), 3.85/3.54 (d,d, 2H, 4-H₂; AB; ²J = 18.2 Hz), 3.20-2.80 (m, 1H, 6-H_{eq}), 2.70-2.35 (m, 1H, 6-H_{ax}), 2.05-1.40 (m, 6H, 7 - 9-H₂).- ¹³C-NMR (CDCl₃): δ (ppm) = 152.86 (C-3); 134.35 (ipso-C); 129.70 (para-C); 128.55 (meta-C); 124.92 (ortho-C); 86.37 (C-9a); 50.38 (C-4?); 49.44 (C-6?); 28.44 (C-9); 25.03 (C-7); 19.35 (C-8).- C₁₃H₁₆N₂O (216.3) Ber. C 72.2 H 7.46 N 13.0 Gef. C 72.0 H 7.26 N 13.1

(Z)-2-(2-Methylpiperidino)-1-phenyl-ethanonoxim (9)

a) Analog Lit.¹⁾ (AAV D) aus 6 und CH₃MgI: 1.51 g (7 mmol) 6, 0.34 g (14 mmol) Mg-Späne, 1.99 g (14 mmol) CH₃I. b) analog Lit.¹⁾ (AAV B) aus 0.41 g (1.8 mmol) 13 und 0.20 g (5.3 mmol) NaBH₄. c) aus 0.92 g (4 mmol) 13 und 0.19 g (5 mmol) LiAlH₄ entspr. Darst. 5. Weiße Kristalle aus Ethanol/Wasser vom Schmp. 69°C (Lit.¹⁾: 69°C). Ausb. a) 1.10 g (68%), b) 0.24 g (57%), c) 0.47 g (51%).

(Z)-1-Phenyl-2-(2-phenylpiperidino)-ethanonoxim(10)

Analog Lit.¹⁾ (AAV D) aus 6 und C₆H₅MgBr: 1.51 g (7 mmol) 6, 0.34 g (14 mmol) Mg-Späne, 2.20 g (14 mmol) C₆H₅Br. Ausb. 1.3 g (63%). Schmp. 130°C (Lit.¹⁾: 130°C).

(Z)-2-(2-Methylpiperidino)-1-phenyl-O-(phenylcarbamoyl)-ethanonoxim (11)

Aus 0.40 g (1.7 mmol) 9 in 8 ml absol. Benzol mit 0.20 g (1.7 mmol) Phenylisocyanat. Weiße Kristalle aus Aceton vom Schmp. 122°C. Ausb. 0.38 g (64%).- IR (KBr): 3260 m, 3200 w, 3140 m, 3080 w, 2940 m, 2860 w, 2800 w, 1730 s, 1600 s, 1500 m, 1550 s cm⁻¹.- MS (120°C): m/z (rel.Int./%) = 232 (0.2), 119 (24), 112 (42), 103 (100), 93 (61), 84 (29), 77 (47), 42 (28).- ¹H-NMR (CDCl₃): δ (ppm) = 8.41 (s, 1H, NH; aust.), 7.86 (''dd'', 2H, ortho-H (C₆H₅NH-); ³J = 6.8 Hz, ⁴J = 3.0 Hz), 7.60-7.00 (m, 8H, restl. aromat. H), 4.01/3.79 (d,d, 2H, 2-H₂; AB; ²J = 14.1 Hz), 2.70 (''d'', 1H, Pip-6-H_{eq}; ''J'' = 11.1 Hz), 2.50-1.95 (m, 2H, Pip.-2-H, -6-H_{ax}), 1.71-1.20 (m, 6H, Pip.-3 - 5-H₂), 1.13 (d, 3H, CH₃; ³J = 6.3 Hz).-C₂₁H₂₅N₃O₂ (351.4) Ber. C 71.8 H 7.17 N 12.0 Gef. C 71.4 H 7.13 N 12.0.

(Z)-1-Phenyl-O-(phenylcarbamoyl)-2-(2-phenylpiperidino)-ethanonoxim (12)

Aus 0.50 g (1.7 mmol) **10** in 10 ml absol. Benzol mit 0.20 g (1.7 mmol) Phenylisocyanat. Weiße Kristalle aus Ethanol vom Schmp. 128°C. Ausb. 0.37 g (53%).- IR (KBr): 3360 w, 3260 w, 3190 vw, 3140 w, 3060 m, 3020 w, 2940 s, 2860 m, 2800 w, 1730 vs, 1600 s, 1510 s, 1545 s cm⁻¹.- MS (130°C): m/z (rel.Int./%) = 294 (0.8), 277 (0.5), 188 (1.4), 174 (43), 160 (4), 132 (6), 119 (86), 103 (60), 93 (7), 91 (100), 84 (8), 77 (29), 42 (24).- ¹H-NMR (CDCl₃): δ (ppm) = 8.27 (s, 1H, NH; aust.), 7.66-7.14 (m, 15 H, aromat. H), 3.73/3.47 (d,d, 2H, 2-H₂; AB; ²J = 13.8 Hz), 3.20-2.75 (m, 2H, Pip-2-H, -6-H_{eq}), 2.35-2.05 (m, 1H, Pip-6-H_{ax}), 1.80-1.20 (m, 6H, Pip-3 - 5-H₂).-C₂₆H₂₇N₃O₂ (413.5) Ber. C 75.5 H 6.58 N 10.2 Gef. C 75.8 H 6.77 N 10.2.

9a-Methyl-3-phenyl-4,6,7,8,9,9a-hexahydro-pyrido[1,2-e]-1,2,5-oxadiazin (13)

Nach Lit.¹⁾ (AAV C) aus 1.51 g (7 mmol) 9; LM: 30 ml Ethanol/Wasser (1+1). Hg-Abscheidung: 1.3 g (100% bez. auf 2 Oxid.-Äquiv.). Reinigungssäule: Al₂O₃, neutral, Akt. I; Länge 3 cm Ø 2.2 cm, CH₂Cl₂. Farblose Kristalle aus Ether/Diisopropylether vom Schmp. 75°C. Ausb. 0.91 g (61%).- IR (KBr): 3060 w, 2990 w, 2940 m, 2920 vw, 2840 vw, 1590 vw, 1490 w cm⁻¹.- MS (40°C): m/z (rel.Int./%) = 230 (18; M⁺), 214 (10), 213 (25), 199 (12), 111 (100), 103 (67), 83 (30), 77 (67), 42 (93).- ¹H-NMR (CDCl₃): δ (ppm) = 7.71-7.50 (m, 2H, ortho-H), 7.45-7.30 (m, 3H, restl. aromat. H), 4.11/3.36 (d,d, 2H, 4-H₂; AB; ²J = 18.6 Hz), 2.80-2.55 (m, 2H, 6-H₂), 2.20-1.30 (m, 6H, 7 - 9-H₂), 1.43 (s, 3H, CH₃).- ¹³C-NMR (CDCl₃, APT): δ (ppm) = 151.26 (C-3); 134.71 (ipso-C); 129.56 (para-C); 128.58 (meta-C); 124.71 (ortho-C); 87.58 (C-9a); 50.51 (C-4); 46.88 (C-6); 35.86 (C-9); 25.42 (C-7); 23.32 (CH₃); 19.92 (C-8).- C₁₄H₁₈N₂O (230.3) Ber. C 73.0 H 7.88 N 12.2 Gef. C 73.3 H 7.74 N 12.2.

(Z)-2-(2,2-Dimethylpiperidino)-1-phenyl-ethanonoxim (14)

a) Analog Lit.¹⁾ (AAV D) aus 13 und CH₃MgI: 1.61 g (7 mmol) 13, 0.34 g (14 mmol) Mg-Späne, 1.99 g (14 mmol) CH₃I. b) s. Darstellung 16, Vorschrift b).- Weiße Kristalle aus Ethanol/Wasser vom Schmp. 106°C. Ausb. a) 1.22 g (71%).- IR (KBr): 3230 s, 3100 s, br (3600-2500), 3070 vw, 3030 vw, 2970 s, 2930 s, 2870 w, 2850 w, 2810 m, 1640 w, br, 1500 m cm^{-1} .- MS (90°C): m/z (rel.Int./%) = 246 (3; M⁺), 231 (12), 126 (100), 112 (26), 103 (62), 98 (43), 84 (13), 77 (26), 42 (43).- 1 H-NMR (DMSO-d₆): δ (ppm) = 11.50 (s, 1H, OH; aust.), 7.76-7.63 (m, 2H, ortho-H), 7.37-7.29 (m, 3H, restl. aromat. H), 3.67 (s, 2H, 2-H₂), 2.33 ("s", 2H, Pip-6-H₂), 1.33 (''s'', 6H, Pip-3 - 5-H₂), 1.07 (s, 6H, 2 · CH₃).- ¹³C-NMR (CDCl₃; APT): δ (ppm) = 153.31 (C-1); 136.39 (ipso-C); 128.90 (para-C); 128.39 (meta-C); 125.97 (ortho-C); 54.50 (Pip-C-2); 50.87 (C-2); 47.85 (Pip-C-6); 40.02 (Pip-C-3); 25.88 (Pip-C-5); 22.38 (CH₃); 22.29 (CH₃); 20.53 (Pip-C-4).-¹³C-NMR (DMSO-d₆; APT): δ (ppm) = 155.30 (C-1); 136.55 (ipso-C); 128.07 (para-C); 127.72 (meta-C); 126.53 (ortho-C); 53.40 (Pip-C-2); 46.79 (Pip-C-6); 43.47 (C-2); 39.99 (Pip-C-3); 25.97 (Pip-C-5); 22.10 (2 CH3); 20.51 (Pip-C-4).- C15H22N2O (246.4) Ber. C 73.1 H 9.0 N 11.4 Gef. C 73.3 H 8.80 N 11.3.

(E)-2-(2,2-Dimethylpiperidino)-1-phenyl-ethanonoxim (16)

a) Analog Lit.¹⁾ (AAV D) aus 15¹⁾ und CH₃MgI: 0.92 g (4 mmol) 15, 0.19 g (8 mmol) Mg-Späne, 1.14 g (8 mmol) CH₃I.- Weiße Kristalle aus Ethanol/Wasser vom Schmp. 98°C. Ausb. 0.72 g (73%). b) 3.93 g (17 mmol) 20 werden in 80 ml absol. C₂H₅OH gelöst, mit 1.12 g (34 mmol) freiem H2NOH versetzt und 3 h rückfließend erhitzt. Man rührt über Nacht bei Raumtemp. und fällt das Oximgemisch 14/16 mit Wasser. Ausb. (Gemisch) 1.97 g (47%). Sc-Trennung von 200 mg des Gemisches: Kieselgel 0.063-0.2 mm; Länge 15 cm, Ø 2.5 cm, CHCl₃/C₂H₅OH/konz. NH₃ (90+10+1): 14 (40 mg; 20%; $R_f = 0.70$), 16 (10 mg; 5%; $R_f = 0.61$).- IR (KBr): 3220 s, br (3600-2600), 3060 w, 2980 m, 2940 s, 2870 w, 2800 m, 2720 w, 1660 vw, 1580 vw, 1490 w cm⁻¹.- MS (100°C): m/z (rel.Int./%) = 246 (0.8; M⁺), 231 (31), 229 (45), 126 (100), 112 (20), 103 (73), 98 (40), 84 (19), 77 (45), 42 (80).- ¹H-NMR (DMSO-d₆): δ (ppm) = 10.62 (s, 1H, OH; aust.), 7.48-7.27 (m, 5H, aromat. H), 3.28 (s, 2H, 2-H₂), 2.56-2.29 (m, ?, Pip-6-H₂; überlagert von DMSO), 1.33 (''s'', 6H, Pip-3 - 5-H₂), 0.90 (s, 6H, 2 · CH₃).- ¹³C-NMR (CDCl₃; APT): δ (ppm) = 156.30 (C-1); 133.13 (ipso-C); 128.55 (para-C); 128.21 (ortho-C); 127.70 (meta-C); 53.94 (C-2); 53.37 (Pip-C-2); 46.92 (Pip-C-6); 40.32 (Pip-C-3); 26.42 (Pip-C-5); 22.69 $(2 \cdot CH_3)$; 21.10 (Pip-C-4).- ¹³C-NMR (DMSO-d₆): δ (ppm) = 154.16 (C-1); 133.94 (ipso-C); 128.19 (ortho-C); 127.71 (para-C); 127.26 (meta-C); 53.36 (C-2); 52.79 (Pip-C-2); 45.99 (Pip-C-6); 39.97 (Pip-C-3); 26.04 (Pip-C-5); 22.29 (2 · CH₃); 20.61 (Pip-C-4).- C₁₅H₂₂N₂O (246.4) Ber. C 73.1 H 9.00 N 11.4 Gef. C 73.4 H 8.80 N 11.4.

2-(2,2-Dimethylpiperidino)-1-phenyl-ethanol (19)

Analog Lit.¹⁾ (AAV D) aus 18⁹⁾ und CH₃MgI: 18.04 g (83 mmol) 18, 4.03 g (166 mmol) Mg-Späne, 23.56 g (166 mmol) CH₃I. Farblose Plättchen aus Methanol vom Schmp. 58°C. Ausb. 12.4 g (64%).- IR (KBr): 3380 m, br, 3080 vw, 3060 vw, 3040 w, 2980 s, 2930 s, 2800 m, 2720 w, 1600 w, 1490 m cm⁻¹.- MS (40°C): m/z (rel.Int./%) = 233 (0.8; M⁺), 218 (0.8), 203 (0.3), 126 (100), 112 (10), 98 (7), 91 (5), 84 (14), 77 (18), 42 (15).- ¹H-NMR (CDCl₃): δ (ppm) = 7.41-7.23 (m, 5H, aromat. H), 4.59 (dd, 1H, 1-H; ABX; "J" = 10 Hz, "J" = 4.3 Hz), 4.46 (s, 1H, OH; aust.), 2.84 ("d", 1H, Pip-6-H_{eq}; "J" = 13.9 Hz), 2.58 (dd, 1H, 2-H_A; ABX; ²J_{A,B} = 12.8 Hz, ³J_{A,X} = 10.3 Hz), 2.55 (m, 1H, Pip-6-H_{ax}), 2.28 (dd, 1H, 2-H_B; ABX; ²J_{B,A} = 12.8 Hz, ³J_{B,X} = 3.9 Hz), 1.49 ("s", 6H, Pip-3 - 5-H₂), 1.12 (s, 3H, CH₃), 0.95 (s, 3H, CH₃).- C₁₅H₂₃NO (233.4) Ber. C 77.2 H 9.94 N 6.0 Gef. C 77.1 H 9.82 N 6.2.

2.2-Dimethyl-1-(2-oxo-2-phenylethyl)-piperidinium-perchlorat (20 · HClO₄)

Analog Lit.¹¹⁾ aus 10.04 g (43 mmol) **19** in 70 ml Eisessig und 6.50 g (65 mmol) CrO₃ in 50 ml Eisessig/Wasser. Nach Entfernen des LM i.Vak. wird der Rückstand mit C₂H₅OH aufgenommen und bis zur sauren Reaktion mit Perchlorsäure versetzt. Weiße Kristalle aus Ethanol vom Schmp. 188°C. Ausb. 7.60 g (53%).- IR (KBr): 3090 m, 2950 m, 2870 m, 1690 s, 1600 m cm-¹.- MS (190°C): m/z (rel.Int./%) = 231 (0.4; M⁺ der Base), 216 (2), 201 (2), 126 (100), 105 (31), 77 (73), 42 (33).- ¹H-NMR (DMSO-d₆): δ (ppm) = 9.05 (s, br, 1H, ⁺NH; aust.), 8.11 (''dd'', 2H, ortho-H; ³J = 7.8 Hz, ⁴J = 1.7 Hz), 7.75-7.40 (m, 3H, restl. aromat. H), 5.20-4.50 (m, 2H, CO-CH₂-N; nach D₂O-Zusatz; 4.98/4.76, d,d, 2H; AB; ²J = 18.8 Hz), 3.50-2.90 (m, 2H, 6-H₂), 2.25-1.50 (m, 6H, 3 - 5-H₂), 1.42 (s, 3H, CH₃), 1.40 (s, 3H, CH₃).- C₁₅H₂₁NO · HClO₄ (331.8) Ber. C 54.3 H 6.68 N 4.2 Gef. C 54.3 H 6.56 N 4.2.

6,6-Dimethyl-3-phenyl-4,6,7,8,9,9a-hexahydro-pyrido[1,2-e]-1,2,5-oxadiazin (21)

Nach Lit.¹⁾ (AAV C) aus 1.31 g (5.3 mmol) 14; LM: 30 ml Ethanol/Wasser (1+1). Hg-Abscheidung: 1 g (94% bez. auf 2 Oxid.-Äquiv.). Reinigungssäule: Al₂O₃, neutral, Akt. I; Länge 5 cm, \emptyset 2.2 cm, CH₂Cl₂. Farblose Kristalle aus Methanol vom Schmp. 80°C. Ausb. 0.76 g (59%).- IR (KBr): 2980m, 2940 s, 2920 m, 1590 w, 1490 w cm⁻¹.- MS (60°C): m/z (rel.Int./%) = 244 (38; M⁺), 229 (14), 227 (28), 125 (40), 110 (95), 103 (100), 77 (91), 42 (33).- ¹H-NMR (CDCl₃): δ (ppm) = 7.71-7.50 (m, 2H, ortho-H), 7.42-7.26 (m, 3H, restl. aromat. H), 4.68 (''t'', 1H, 9a-H_{eqi}; ³J = 4 Hz), 3.84 (s, 2H, 4-H₂), 2.05-1.25 (m, 6H, 7 - 9-H₂), 1.19 (s, 3H, CH₃), 1.15 (s, 3H, CH₃).- C₁₅H₂₀N₂O (244.3) Ber. C 73.7 H 8.25 N 11.5 Gef. C 73.7 H 8.05 N 11.6.

(Z)-2-(2,2,6-Trimethylpiperidino)-1-phenyl-ethanonoxim (22)

Analog Lit.¹⁾ (AAV D) aus **21** und CH₃MgI: 1.22 g (5 mmol) **21**, 0.24 g (10 mmol) Mg-Späne, 1.42 g (10 mmol) CH₃I. Gelbliche Kristalle aus Diisopropylether/Pentan vom Schmp. 60°C. Ausb. 0.90 g (69%).- IR (KBr): 3600-2000 br, 3060 w, 2980 s, 2930 s, 2860 vw, 2840 w, 1590 m, 1490 w cm⁻¹.- MS (80°C): m/z (rel.Int./%) = 260 (3; M⁺), 245 (10), 228 (4), 140 (92), 112 (52), 103 (100), 84 (19), 77 (34), 42 (77).- ¹H-NMR (DMSO-d₆): δ (ppm) = 13.15 (s, 1H, OH; aust.), 7.70-7.53 (m, 2H, ortho-H), 7.41-7.27 (m, 3H, restl. aromat. H), 3.92/3.72 (d,d, 2H, 2-H₂; AB; ²J = 17.2 Hz), 2.84-2.56 (m, 1H, Pip-6-H), 1.39 (''d'', 6H, Pip-3 - 5-H₂), 1.10 (s, 3H, Pip-2-CH₃), 1.00 (s, 3H, Pip-2-CH₃), 0.99 (d, 3H, Pip-6-CH₃; ³J = 6.3 Hz).-C₁₆H₂₄N₂O (260.4) Ber. C 73.8 H 9.29 N 10.8 Gef. C 74.1 H 9.52 N 11.0.

6,6,9a-Trimethyl-3-phenyl-4,6,7,8,9,9a-hexahydro-pyrido[1,2-e]-1,2,5-oxadiazin (23)

Nach Lit.¹⁾ (AAV C) aus 0.96 g (3.7 mmol) 22; LM: 30 ml Ethanol/Wasser (1+1). Hg-Abscheidung: 0.66 g (89% bez. auf 2 Oxid.-Äquiv.). Reini-

gungssäule: Al₂O₃, neutral, Akt. I; Länge 4 cm, \emptyset 2.2 cm, CH₂Cl₂. Gelbliche Kristalle aus C₂H₅OH vom Schmp. 96°C. Ausb. 0.65 g (68%).- IR (KBr): 3060 w, 2990 m, 2980 w, 2960 w, 2950 s, 1590 w, 1490 w cm⁻¹.-MS (60°C): m/z (rel.Int./%) = 258 (13; M⁺), 241 (8), 225 (13), 210 (13), 156 (24), 129 (64), 124 (82), 103 (82), 77 (58), 42 (100).- ¹H-NMR (CDCl₃): δ (ppm) = 7.73-7.56 (m, 2H, ortho-H), 7.47-7.32 (m, 3H, restl. aromat. H), 3.92/3.76 (dd, 2H, 4-H₂; AB; ²J = 19.4 Hz), 2.25-1.25 (m, 6H, 7-9-H₂), 1.46 (s, 3H, 9a-CH₃), 1.17 (s, 3H, 6-CH₃), 1.10 (s, 3H, 6-CH₃).-C₁₆H₂₂N₂O (258.4) Ber. C 74.4 H 8.58 N 10.8 Gef. C 74.4 H 8.77 N 11.1.

(Z)-2-(2,2,6,6-Tetramethylpiperidino)-1-phenyl-ethanonoxim (24)

Analog Lit.¹⁾ (AAV D) aus 23 und CH₃MgI: 594 mg (2.3 mmol) 23, 112 mg (4.6 mmol) Mg-Späne, 653 mg (4.6 mmol) CH₃I. Nach dem Entfernen des LM i.Vak. wird der Rückstand aus Methanol und anschließend aus Ether umkristallisiert. Gelbliche Kristalle vom Schmp. 141°C. Ausb. 300 mg (48%).- IR (KBr): 3060 m, 2990 m, 2970 s, 2940 s, 2910 s, 1590 m, 1490 w cm⁻¹.- MS (140°C): m/z (rel.Int/%) = 274 (1; M⁺), 259 (5), 154 (43), 126 (29), 103 (100), 77 (39), 42 (64).- ¹H-NMR (DMSO-d₆): δ (ppm) = 13.53 (s, 1H, OH; aust.), 7.68-7.60 (m, 2H, ortho-H), 7.37-7.29 (m, 3H, restl. aromat. H), 3.91 (s, 2H, 2-H₂), 1.46 (''s'', 6H, Pip-3 - 5-H₂), 1.05 (s, 12H, 4 · CH₃).- C₁₇H₂₆N₂O (274.4) Ber. C 74.4 H 9.55 N 10.21 Gef. C 74.7 H 9.60 N 10.5.

(E)-2-(2,6-Dimethylpiperidino)-1-phenyl-ethanonoxim (25)

Nach Lit.¹⁾ (AAV A) aus 6.78 g (0.04 mol) (Z)-2-Chlor-1-phenyl-ethanonoxim und 9.06 g (0.08 mol) 2,6-Dimethylpiperidin. Weiße Kristalle aus Ethanol vom Schmp. 172°C. Ausb. 6.90 g (70%).- IR (KBr): 3180 w, br (3600-2300), 3060 m, 2970 m, 2940 m, 2920 m, 2860 m, 1630 vw, br, 1510 m cm^{-1} .- MS (100°C): m/z (rel.Int./%) = 246 (0.1; M⁺), 231 (14), 229 (27), 212 (25), 126 (100), 112 (13), 110 (18), 103 (43), 98 (18), 77 (23), 42 (39).- ¹H-NMR (CDCl₃): δ (ppm) = 7.42 (''s'', 5H, aromat. H), 3.76 (s, 2H, 2-H₂), 2.85-2.40 (m, 2H, Pip-2-H, -6-H), 1.75-1.15 (m, 6H, Pip-3 -5-H₂), 1.08 (d, 6H, $2 \cdot CH_3$; ³J = 6.3 Hz).- ¹H-NMR (DMSO-d₆): δ (ppm) = 10.56 (s, 1H, OH; aust.), 7.34 ("s", 5H, aromat. H), 3.66 (s, 2H, 2-H₂), 2.72-2.33 (m, Pip-2-H, -6-H, überlagert von DMSO), 1.70- 1.06 (m, 6H, Pip-3 - 5-H₂), 0.96 (d, 6H, 2 · CH₃; ${}^{3}J = 6.3$ Hz).- ${}^{13}C$ -NMR (CDCl₃): δ (ppm) = 128.75 (para-C); 128.18 (ortho-C); 127.56 (meta-C); 56.25 (Pip-C-2, -C-6); 51.63 (C-2); 34.55 (Pip-C-3, -C-5); 24.38 (Pip-C-4); 21.26 (2 · CH₃). Aufgrund der geringen Konz. der Probe infolge der schlechten Löslichkeit von 25 in CDCl3 konnten für die quartären C-Atome keine Signale erhalten werden.- ¹³C-NMR (DMSO-d₆; APT): δ (ppm) = 155.07 (C-1); 135.12 (ipso-C); 127.77 (ortho-C?); 127.71 (para-C); 127.56 (meta-C?); 54.84 (Pip-C-2, -C-6); 50.95 (C-2); 34.23 (Pip-C-3, -C-5); 23.63 (Pip-C-4); 21.02 (s · CH₃).- C₁₅H₂₂N₂O (246.4) Ber. C 73.1 H 9.00 N 11.4 Gef. C 73.2 H 8.76 N 11.4.

5,8a-Dimethyl-2-phenyl-3,5,6,7,8,8a-hexahydro-imidazo[1,2-a]pyridinl-oxid (26)

Nach Lit.¹⁾ (AAV C) aus 1.97 g (8 mmol) **25**; LM: 40 ml Ethanol/Wasser (1+1). Hg-Abscheidung: 1.72 g (107% bez. of 2 Oxid.-Äquiv.). Reinigungssäule: Al₂O₃, neutral, Akt. I; Länge 3 cm, Ø 2.2 cm, CH₂Cl₂. Weiße Kristalle aus Hexan/Diisopropylether vom Schmp. 78-83°C. Ausb. 1.12 g (58%).- IR (KBr): 3060 w, 3040 w, 2970 m, 2940 s, 2910 w, 2880 w, 2780 m, 1575 m, 1495 m, 1560 s, 1225 vs, 1690 m, br cm⁻¹.- MS (40°C): m/z (rel.Int./%) = 244 (13; M⁺), 227 (15), 213 (10), 158 (11), 125 (41), 110 (100), 103 (50), 77 (32), 42 (55).- ¹H-NMR (CDCl₃): nicht interpretierbar (Diastereomerengemisch).- ¹³C-NMR (CDCl₃; APT): **26**-*cis*: δ (ppm) = 93.60 (C-8a); 55.64 (C-5); 54.41 (C-3); 31.87 (C-6); 25.69 (8a-CH₃); 19.37 (5-CH₃).- **26**-*trans*: δ (ppm) = 90.34 (C-8a); 49.77 (C-5); 46.96 (C-3); 30.41 (C-6); 22.37 (8a-CH₃); 19.93 (5-CH₃).- nicht eindeutig zuzuordnen: δ (ppm) = 130.06, 128.81, 128.60, 128.50, 126.78, 126.54, 126.34 (aromat. C); 27.49, 21.11, 19.22 (CH₂).- C₁₅N₂₀N₂O (244.3) Ber. C 73.7 H 8.25 N 11.5 Gef. C 73.9 H 8.45 N 11.5.

(E)-2-(2,2,6-Trimethylpiperidino)-1-phenyl-ethanonoxim (27)

Analog Lit.¹⁾ (AAV D) aus **26** und CH₃MgI: 1.39 g (5.7 mmol) **26**, 0.28 g (11.4 mmol) Mg-Späne, 1.62 g (11.4 mmol) CH₃I. Weiße Kristalle aus Ethanol/Wasser vom Schmp. 141°C. Ausb. 1.20 g (81%).- IR (KBr): 3210 s, br (3600-2700), 3080 vw, 3060 w, 3030 vw, 2970 s, 2940 s, 2870 w, 2800 w, 1620 w, br, 1490 m cm⁻¹.- MS (110°C): m/z (rel.lnt./%) = 260 (0.3; M⁺), 245 (34), 243 (49), 226 (16), 212 (16), 140 (91), 126 (15), 112 (47), 103 (100), 84 (14), 77 (32), 42 (41).- ¹H-NMR (DMSO-d₆): δ (ppm) = 10.43 (s, 1H, OH; aust.), 7.31 (''s'', 5H, aromat. H), 3.58/3.26 (dd, 2H, 2-H₂; AB; ²J = 15.6 Hz), 2.88-2.52 (m, 1H, Pip-6-H), 1.31 (''s'', 6H, Pip-3 - 5-H₂), 0.98 (d, 3H, Pip-6-CH₃; ³J = 6.4 Hz), 0.90 (s, 3H, Pip-2-CH₃), 0.80 (s, 3H, Pip-2-CH₃).- C₁₆H₂₄N₂O (260.4) Ber. C 73.8 H 9.29 N 10.8 Gef. C 74.1 H 9.48 N 10.9.

(E)-1-(2-Hydroximino-2-phenyl-ethyl)-2,6,6-trimethyl-3,4,5,6-tetrahydro-pyridinium-perchlorat (**28** · HClO₄)

Nach Lit.¹⁾ (AAV C) aus 0.78 g (3 mmol) **27**; LM: 24 ml Ethanol/Wasser (1+1). Hg-Abscheidung: 0.59 g (98% bez. auf 2 Oxid.-Äquiv.). Da die Base **28** nicht kristallisierte, wurde der Rückstand nach Einengen der org. Phase i.Vak. mit CH₃OH aufgenommen und bis zur sauren Reaktion mit Perchlorsäure versetzt. Weiße Kristalle aus Methanol vom Schmp. 198°C (Zers.). Ausb. 0.84 g (78%).- IR (KBr): 3400 s, br, 3010 w, 2990 vw, 2960 w, 2900 w, 1650 s, 1500 w cm⁻¹.- MS (200°C): m/z (rel.Int./%) = 259 (0.3; M⁺ des Kations), 225 (50), 210 (60), 169 (35), 156 (100), 128 (25), 115 (15), 103 (9), 77 (10), 42 (25).- ¹H-NMR (DMSO-d₆): δ (ppm) = 12-9 (br, 1H, OH; aust.), 7.71 ('s'', 2H, ortho-H), 7.57-7.38 (m, 3H, restl. aromat. H), 5.02 (s, 2H, -CH₂-N), 2.89 ('s'', 2H, 3-H₂), 2.39 (s, 3H, 2-CH₃; ebenso wie 3-H₂ 48 h nach D₂O-Zusatz weitgehend ausgetauscht), 1.82 ('s'', 4H, 4 - 5-H₂), 1.49 (s, 6H, 2 · (6-CH₃)).- C₁₆H₂₃N₂O⁺ ClO₄⁻ (358.8) Ber. C 53.6 H 6.46 N 7.8 Gef. C 53.3 H 6.45 N 7.8.

(E)-2-(2,2,6,6-Tetramethylpiperidino)-1-phenyl-ethanonoxim (29)

Analog Lit.¹⁾ (AAV D) aus **28** und CH₃MgI: 517 mg (2 mmol) **28** (aus **28** · HClO₄ mit konz. NH₃-Lösung freigesetzt und mit CH₂Cl₂ extrahiert), 97 mg (4 mmol) Mg-Späne, 568 mg (4 mmol) CH₃I. Weiße Kristalle aus Ethanol/Wasser vom Schmp. 150°C. Ausb. 320 mg (58%).- IR (KBr): 3190 s, br (3550-2740), 3080 vw, 3060 vw, 2990 w, 2970 m, 2930 s, 2870 w, 1620 w, br, 1600 vw, 1490 w cm⁻¹.- MS (120°C): m/z (rel.Int./%) = 274 (4; M⁺), 259 (81), 204 (12), 154 (66), 126 (43), 103 (100), 77 (48), 42 (66).- ¹H-NMR (DMSO-d₆): δ (ppm) = 10.30 (s, 1H, OH; aust.), 7.23 ('s'', 5H, aromat. H), 3.43 (s, 2H, 2-H₂), 1.33 (''s'', 6H, Pip-3 - 5-H₂), 0.90 (s, 12 H, 4 · CH₃).-C₁₇H₂₆N₂O (274.4) Ber. C 74.4 H 9.55 N 10.2 Gef. C 74.5 H 9.33 N 10.0.

Literatur

- 1 H. Möhrle und M. Gehlen, Arch. Pharm. (Weinheim) 325, 107 (1992).
- 2 H. Möhrle und R. Engelsing, Chem. Ber. 106, 1172 (1973).
- 3 H. Möhrle, B. Wehefritz und A. Steigel, Tetrahedron 43, 2255 (1987).
- 4 J.R. Lambert und A.R. Wagenas, Org. Magn. Reson. 17, 265 (1981).
- 5 D. Tourwé und G. van Binst, Heterocycles 9, 507 (1978).
- 6 R.T. LaLonde und T.N. Donvito, Can. J. Chem. 52, 3778 (1974).
- 7 E. Gössinger, Tetrahedron Lett. 1980, 2229.
- 8 D. Ottersbach, Dissertation, Universität Düsseldorf 1988.
- 9 M. Gehlen, Dissertation, Universität Düsseldorf 1990.
- 10 H. Möhrle, B. Gusowski und R. Feil, Tetrahedron 27, 221 (1971).
- 11 H. Möhrle und R. Engelsing, Monatsh. Chem. 102, 233 (1971).

[[]Ph928]