CHEMISTRY LETTERS, pp. 1449-1452, 1986.

A Stereospecific Synthesis of $\beta\text{-}Glycosides$ of $\underline{N}\text{-}Acetylneuraminic}$ Acid and Secondary Alcohols^1)

Kaoru OKAMOTO, Tadao KONDO,^{†*} and Toshio GOTO^{*} Laboratory of Organic Chemistry, Faculty of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464 [†]Chemical Instrument Center, Nagoya University, Chikusa-ku, Nagoya 464

Glycosylation of secondary alcohols such as cholesterol, methyl 2,4,6-tri-O-benzylgalactopyranoside, and 2-deoxy-2,3-dehydro-NeuAc methyl ester with a new glycosyl donor, 2β , 3α -dibromo-2-deoxy-NeuAc methyl ester, selectively gave the corresponding β -glycosides in high yields. The 3α -bromo-glycosides were debrominated with tri-n-butylstannane to the corresponding glycosides, which were deprotected to give the free glycosides having a β -NeuAc.

Glycosylation of <u>N</u>-acetylneuraminic acid (NeuAc) is one of the most important steps for the synthesis of gangliosides. The most common glycosyl donor in the glycosylation is the 2 β -chloro derivative of pentaacetylneuraminic acid methyl ester, 1, first prepared by Kuhn et al.²) Primary alcohols could be glycosylated with the chloroacetylneuraminic ester 1 to give a mixture of α - and β -glycosides in moderate yields accompanied by the dehydrohalogenated product, the protected 2deoxy-2,3-dehydroneuraminic ester 2.³) In the case of sugar derivatives having a hydroxy group, however, the major product was the dehydrated neuraminic ester 2 and the expected glycosylated product(s) was scarcely formed. We report here a new glycosylation method of secondary alcohols by the use of 2,3-dibromoneuraminic acid derivative 3 to produce only β -glycosylated products in high yields.

The protected 2-deoxy-2,3-dehydroneuraminic ester 2^{3} (mp 126-127 °C) was brominated by treatment with bromine in dichloromethane or by the electrochemical oxidation of sodium bromide⁴) in acetonitrile-water (Pt-Pt electrodes) system to

give the dibromide $3^{5,6}$ (mp 156-157 °C) in 93 or 98% yield, respectively. The dibromide 3 is suitable for the glycosylation with the secondary alcohols since 3-axial position of 3 was blocked by the bromo group so as to prevent the dehydrobromination reaction.⁷⁾ Glycosylation of cholesterol with the dibromide 3(1.0 equiv.) was carried out in benzene in the presence of silver triflate (1.0 equiv.) and disodium hydrogen phosphate to give the protected $3-\underline{O}-(3\alpha-bromo 2\beta$ -neuraminyl)cholesterol 7^{6} (mp 224-225 °C) in 88% yield. Reduction of the bromo-glycoside 7 with tri-n-butylstannane gave in 96% yield the debrominated compound $\mathbf{8}$, $^{6)}$ (mp 119-120 °C) which was identical with the β -glycoside $\mathbf{8}$ prepared by glycosylation of cholesterol with the chloroneuraminic acid derivative ${f 1}$ followed by separation of the produced mixture of the α - and β -glycosides.⁸) The anomeric configuration of the glycosides was deduced from the empirical rule of Paulsen et al.⁹) The similar glycosylation of methyl 2,4,6-tri-O-benzyl- β -Dgalactopyranoside 11^{10} with the dibromide 3 gave in 50% yield the protected 3-Q- $(3\alpha$ -bromo-2 β -neuraminyl)galactopyranoside 12,⁶ which was easily debrominated with tri-<u>n</u>-butylstannane to give the 3-glycoside derivative of galactose, $13,^{6}$ in 96% yield. Since the glycosylation of the galactopyranoside 11 with chloride 1 gave no glycosides, the configuration of the anomeric position of ${\bf 13}$ was deduced as β by analysis of its ¹H-NMR spectrum; the H-4 of NeuAc unit of **13** appears in 4.98 ppm and the J7.8 coupling constant was 2.1 Hz. These values agreed with those deduced from the empirical rule.⁹⁾

The glycosylation of the protected 2-deoxy-2,3-dehydroneuraminic ester 19^{11}) having a hydroxyl group at 8-position with the dibromide 3 gave in 58% yield only the bromo- β -glycoside 20,⁶) which was debrominated with tri-<u>n</u>-butylstannane to 21⁶) in 95% yield. In the ¹H-NMR spectrum of 21, H-4 of the first NeuAc unit appeared at 5.09 ppm and the J_{7,8} coupling constant was 2.7 Hz, and also H-8 of the 2,3-dehydro-NeuAc unit appeared in 4.53 ppm. These data confirmed the structure of 21 as β configuration.

The protected glycosides 8, 13, and 21 were deprotected quantitatively by hydrogenolysis (10% Pd-C in MeOH) and/or hydrolysis (i, <u>t</u>-BuOK in MeOH; ii, 1 mol dm⁻³ NaOH in MeOH) to give the free glycosides 10, 14, and 22,⁶⁾ respectively. The NeuAc(β 2-8)NeuAc derivative 20 still has a 2,3-unsaturated bond in the second NeuAc part, which could be converted to the corresponding tribromide 23⁶) in 98% yield. Glycosylation of the glucose derivative 4 with the tribromide 23 afforded in 42% yield the NeuAc(β 2-8)NeuAc(β 2-6)Glc derivative 24,⁶) which was debrominated in the same manner as above to give the corresponding trisaccharide 25 in 90% yield.

In conclusion we found that the glycosylation of the dibromide **3** with secondary alcohols gave only β -glycoside owing to steric hindrance of the axial bromo group at C-3, whereas the bromo group prevented the elimination reaction. In this procedure we could first construct the NeuAc(β 2-8)NeuAc linkage.

25: x = H

References

- 1) Synthetic Studies on Gangliosides 1.
- 2) R. Kuhn, P. Lutz, and D. L. MacDonald, Chem. Ber., 99, 611 (1966).
- 3) P. Meindl and H. Tuppy, Monatsh. Chem., <u>100</u>, 1295 (1969).
- 4) S. Torii, K. Uneyama, H. Tanaka, T. Yamanaka, T. Yasuda, M. Ono, and Y. Kohmoto, J. Org. Chem., <u>46</u>, 3312 (1981).
- 5) The dibromide 3: MS(FAB) m/z 634 (M+H).
- 6) Satisfactory elemental analyses were obtained for these compounds. $[\alpha]_D$ and 1H -NMR (NeuAc unit in chloroform-d) data are shown below.

Com- pound	[α] _D a)	Chemical sl	coupling constants,			Hz in ¹ H-NMR					
		H-3eq H-3a: (dd) (dd)	x H-4 H-5 (dd) (ddd)	H-6 (dd)	H-7 (dd)	H-8 (ddd)	H-9 (dd)	H-9' (dd)	Me ester (s)	NH (d)	^J 7,8
3	-57.7°	5.05 ^b)	5.77 ^{C)} 4.51	4.46	5.42	5.25	4.15	4.45	3.91	5.54	7.0
5	+49.6°	4.64 ^{b)}	5.35 ^{C)} 4.53	4.49	5.34	5.27	4.16	5.19	3.75	5.53	2.0
6	+23.3°	2.47 1.88	5.16 4.11	4.27	5.38	5.27	4.13	5.07	3.72	5.49	2.2
7	-15.0°	4.64 ^{b)}	5.52 ^{C)} 4.26	4.26	5.32	5.17	4.22	4.84	3.82	5.38	2.4
8	-40.0°	(2.52 d)	5.25 4.09	4.11	5.38	5.06	4.15	4.88	3.80	5.52	2.0
10 ^{e)}	-41.5° ^f	2.45 1.57	4.02 d)	d)	d)	d)	d)	d)			d)
12	+34.4°	4.73 ^{b)}	5.05 ^{C)} 4.51	3.87	5.09	5.19	4.03	5.23	3.53	3.51	2.0
13	+ 5.3°	2.70 1.80	4.98 3.99	3.91	5.15	5.15	4.00	4.99	3.54	3.86	2.1
14 ^{g)}	-18.3°É	2.50 1.73	4.20 d)	d)	d)	d)	d)	d)			d)
19	+48.1°	5,95 ^{b)}	5.59 ^C)4.39	4.56	5.20	4.25	4.14	4.19	3.81	5.74	7.9
20	+57.1°	4.58 ^{b)}	5.22 ^{C)} 4.62	4.56	5.29	5.33	4.07	5.05	3.80 ^h)	6.08	2.3
21	+31.2°	2.49 1.80	5.09 4.08	4.62	5.37	5.31	4.01	4.92	3.78 ⁿ⁾	6.06	2.7
22 ^{g)}	+42.6°i	2.31 2.15	4.05 3.90 ^C	4.02	3.59	3.69	3.61	3.79	, ,		9.2
24	+31.7°	4.60 ^{b)}	5.21 ^{C)} 4.65	4.61	5.34	5.34	4.10	5.08	3.60 ^h)	6.20	1.9
25	- 2.0°	2.43 1.80	5.11 4.11	4.63	5.41	5.33	4.07	4.96	3.61 ^{h)}	6.12	2.4

a) Measured in chloroform. b) Multiplicity: d. c) Multiplicity: dd. d) Not assigned owing to the complexity of the spectrum. e) Measured in methanol- \underline{d}_4 . f) Measured in methanol. g) Measured in D₂O (<u>t</u>-BuOH=1.23 ppm). h) Assignments may be interchanged with reducing or center NeuAc unit. i) Measured in water.

- 7) Primary alcohols could be glycosylated more easily with the dibromide 3; for example, methyl 2,3,4-tri- \underline{O} -benzyl- α - \underline{D} -glucopyranoside $\mathbf{4}^{12}$) reacted with 3 to give only the β -glycoside $\mathbf{5}^{6}$) in 70% yield. Debromination of 5 with tri- \underline{n} -butylstannane afforded $\mathbf{6}^{6,13}$) in 97% yield.
- 8) The α -glycoside **9** (mp 105-106 °C), 33% yield and the β -glycoside **8**, 37% yield.
- 9) H. Paulsen and H. Tietz, Angew. Chem., Int. Ed. Engl., 21, 927 (1982).
- 10) H. M. Flowers, Carbohydr. Res., 39, 245 (1975).
- 11) The glycosyl acceptor 19 having a hydroxyl group at 8-position was prepared from 2-deoxy-2,3-dehydro-NeuAc methyl ester 15³) in the following four steps: (i) Dowex50W-X8 and acetone at 40 °C for 5 h (8,9-O-acetonide 16,⁶) mp 166-167 °C, 73% yield); (ii) Ac₂O-pyridine at 60 °C for 6 h (17,⁶) mp 77-78 °C, 98% yield); (iii) 80% AcOH at 60 °C for 1 h (8,9-diol 18,⁶) 81% yield); and (iv) AcCl-pyridine at -20 °C for 0.5 h (8-ol 19,⁶) 76% yield).
- 12) P. Kovac, J. Alfödi, and B. Kosik, Chem. Zveski, 28, 820 (1974).
- 13) H. Ogura, K. Furuhata, T. Osawa, S. Toyoshima, and M. Ito, Ger. Offen. DE3219209 (1982).

(Received June 6, 1986)