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Reaction of Cyclic Oxime with DIBAL-H: Facile Synthesis of 17β-Hydroxy-
steroid Dehydrogenase Type 3 Inhibitor
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Abstract: Synthetic studies on a 17β-hydroxysteroid dehydroge-
nase type 3 (17β-HSD3) inhibitor are described. The unsymmetrical
dibenzazocine skeleton was constructed by a regiocontrolled ring-
expansion reaction of a cyclic oxime with DIBAL-H.
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Since 17β-hydroxysteroid dehydrogenase type 3 (17β-
HSD3) is an enzyme involved in testosterone biosynthe-
sis, inhibitors of 17β-HSD3 could be new medicines for
the treatment of prostate cancer. Recently, Fink reported
that several dibenzazocines inhibit 17β-HSD3 at picomo-
lar concentrations in both cell-free enzymatic and cell-
based transcriptional reporter assays (Figure 1).1 While
they synthesized a series of benzazocines by an oxidative
cleavage at the 2,3-position of 2,3-fused indoles accord-
ing to the known protocol,2 the starting indanones and
arylhydrazines are not always available, and a general
synthetic methodology for dibenzazocines is still needed.

Figure 1  17β-HSD3 inhibitor for the treatment of prostate cancer

Recently, we established new synthetic methodologies for
cyclic arylamines, including a tetrahydrobenzazocine, by
a reductive ring-expansion reaction of cyclic oximes and
hydroxylamines using aluminum hydrides such as
DIBAL-H3 and AlHCl2.

4 When we applied the reaction to
pseudosymmetrical benzophenone oximes, it was found
that the more electron-rich aromatic ring has a stronger
migratory aptitude (Scheme 1).3c Thus, treatment of
oximes 2a and 2b with DIBAL-H exclusively provided
the N-arylbenzylamines 3a and 3b as a single isomer.

Taking advantage of the electron-density-controlled mi-
gration, we planned a synthesis of 17β-HSD3 inhibitor 1.
A dibenzoazocine ring would be constructed by regio-

selective reductive ring-expansion reaction of a pseudo-
symmetrical dibenzosuberone oxime 5 with fine-tuned
electron density of two aromatic rings by the Br group,
with or without a removable substituent X. Then, N-acyl-
ation and introduction of a phenyl group by cross-
coupling reaction would provide 1 (Scheme 2). 

Scheme 2  Synthetic strategy for 17β-HSD3 inhibitor 1, including a
regiocontrolled ring expansion mediated by DIBAL-H

Herein we report a concise synthesis of 17β-HSD3 inhib-
itor 1 featuring a unique regiocontrolled reductive ring-
expansion reaction governed by a slight difference in elec-
tron density between the two benzene rings.

Preparation of dibenzosuberone oximes 5a and 5b for the
key reaction was performed as shown in Scheme 3. Sono-
gashira coupling of methyl 5-bromo-2-iodobenzoate and
trimethylsilylacetylene followed by basic removal of the
TMS group gave arylacetylene 6. The second Sonogashira
coupling, with the corresponding iodobenzene or 3-iodo-
1-methylthiobenzene,5,6 provided 1,2-diarylacetylenes 7.
While hydrogenation of 7a smoothly gave ester 8a with
catalytic platinum oxide under atmospheric pressure; in
the case of 7b high pressure (68.95 bar) was necessary for
the high-yielding process. Hydrolysis of 8 and subsequent
Friedel–Crafts acylation gave dibenzosuberones 10 using
P2O5–MsOH,7 which were converted into the correspond-
ing oximes 5 by treatment with NH2OH·HCl in pyridine.

We next focused on the reductive ring-expansion reaction
for the regiocontrolled construction of the dibenzazocine
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Scheme 1  Regioselective rearrangement of benzophenone oxime
with DIBAL-H

NOH

R1

DIBAL-H

CH2Cl2
0 °C to r.t.

N
H

R1

2a R1 = OMe, R2 = H
2b R1 = H, R2 = CF3

3a R1 = OMe, R2 = H; 90%
3b R1 = H, R2 = CF3; 65%

R2

R2

(E/Z = ca. 1:1)
(E/Z = ca. 1:1)

N Br

X X

HON
Br

H

1

4 5

SYNLETT 2013, 24, 0813–0816
Advanced online publication: 11.03.20130 9 3 6 - 5 2 1 4 1 4 3 7 - 2 0 9 6
DOI: 10.1055/s-0032-1318489; Art ID: ST-2013-U0100-L
© Georg Thieme Verlag  Stuttgart · New York

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

 



814 H. Cho et al. LETTER

Synlett 2013, 24, 813–816 © Georg Thieme Verlag  Stuttgart · New York

ring (Table 1). First, we treated oxime 5a with six equiv-
alents of DIBAL-H at 0 °C,3 which resulted in incomple-
tion of the reaction even at room temperature, and a
mixture of azocines 4a and 11a (4a/11a = 3.3:1.0) was
obtained in 46% yield with recovery of the starting oxime
5a (28%) (Table 1, entry 1). At 80 °C in 1,2-dichloroeth-
ane, oxime 5a was completely consumed to provide a
mixture of azocines (4a/11a = 2.0:1.0) in 73% yield (Ta-
ble 1, entry 2). These results suggested that we should add
a removable electron-donating group (X) on the other
benzene ring. We selected a methylthio group as substitu-
ent X and examined the ring-expansion reaction. Thus,
treatment of 5b with DIBAL-H at 0 °C also gave a mix-
ture of azocines with better regioselectivity
(4b/11b = 8.5:1.0), although in lower yield (42%, Table
1, entry 3). Finally, we found that the use of six equiva-
lents of DIBAL-H at room temperature gave azocines in
satisfactory yield and selectivity (67% yield,
4b/11b = 6.0:1.0, Table 1, entry 4).8

With the desired azocines 4 in hand as a mixture of regio-
isomers, we then converted them into 17β-HSD3 inhibitor
1 (Scheme 4). After acetylation of azocines 4 and 11, we
separated each regioisomer. The structure of compound
12a9 was confirmed by X-ray crystallographic analysis
(Figure 2).10 Subjection of 12a under the Suzuki–Miyaura
coupling conditions provided 5-acetyl-5,6,11,12-tetra-

hydro-8-phenyldibenz[b,f]azocine (1) in 70% yield. De-
sulfurization of 14, which was prepared from 12b11 in the
same route with Raney Ni, gave 1 in good yield.12

Scheme 3  Preparation of oxime 5
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Table 1 DIBAL-H-Mediated Ring-Expansion Reactiona

Entry X Temp Time (h) Yield (%)b 4/11c

1 H 0 °C to r.t. 12 46d 3.3:1.0

2e H 80 °C 16 73 2.0:1.0

3 SMe 0 °C to r.t. 12 42f 8.5:1.0

4 SMe r.t. 12 67 6.0:1.0

a Reaction conditions: DIBAL-H (6 equiv) was added to the mixture 
of 5 in CH2Cl2 (0.1 M).
b Isolated yields as a mixture of 4 and 11.
c Determined by 1H NMR analysis.
d Starting material 5a (28%) was recovered.
e Instead of CH2Cl2, DCE was used as a solvent.
f Starting material 5b (36%) was recovered.
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Scheme 4  Synthesis of 17β-HSD3 inhibitor 1
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Figure 2  ORTEP drawing of the molecular structure of compound
12a with thermal ellipsoids at 50% probability levels

In conclusion, we achieved a concise synthesis of 17β-
HSD3 inhibitor 1 with a dibenzazocine skeleton. The syn-
thesis features the regiocontrolled reductive ring-expan-
sion reaction of cyclic ketoxime.
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NMR (100 MHz, CDCl3): δ = 148.5, 145.3, 140.7, 139.3, 
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12a have been deposited with the Cambridge 
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obtained free of charge from the CCDC via http://beta-
www.ccdc.cam.ac.uk/pages/Home.aspx.

(11) 5-Acetyl-5,6,11,12-tetrahydro-8-bromo-2-methylthio-
dibenz[b,f]azocine (12b)
Colorless oil. IR (neat): 3002, 2921, 1657, 1491, 1386, 1286, 
754 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.26–7.20 (m, 2 
H), 7.03 (dd, 1 H, J = 8.0, 2.0 Hz), 6.97 (dd, 1 H, J = 8.0 Hz), 
6.91 (d, 1 H, J = 8.0 Hz), 6.89 (d, 1 H, J = 2.0 Hz), 5.73 (d, 

1 H, J = 14.8 Hz), 3.99 (d, 1 H, J = 14.8 Hz), 3.24–3.10 (m, 
2 H), 2.88–2.70 (m, 2 H), 2.42 (s, 3 H), 1.80 (s, 3 H). 13C 
NMR (100 MHz, CDCl3): δ = 170.3, 139.4, 139.3, 139.1, 
137.3, 137.2, 132.7, 131.1, 130.8, 128.8, 128.4, 125.1, 
119.8, 52.0, 34.7, 30.7, 22.7, 15.3. HRMS (ESI+): m/z calcd 
for C18H19BrNOS [M + H+]: 376.0365; found: 376.0381.

(12) 5-Acetyl-5,6,11,12-tetrahydro-8-phenyldibenz[b,f]azocine (1)
Colorless oil. IR (neat): 3027, 2930, 1658, 1494, 1389, 765 
cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.49 (d, 2 H, J = 7.2 
Hz), 7.45–7.27 (m, 5 H), 7.21–7.00 (m, 5 H), 5.83 (d, 1 H, 
J = 14.8 Hz), 4.16 (d, 1 H, J = 14.8 Hz), 3.38–3.15 (m, 2 H), 
3.00–2.81 (m, 2 H), 1.82 (s, 3 H). 13C NMR (150 MHz, 
CDCl3): δ = 170.3, 140.5, 139.43, 139.37, 139.1, 135.4, 
131.2, 129.9, 128.8, 128.7, 128.6, 128.54, 128.46, 127.8, 
127.1, 126.9, 126.3, 52.8, 34.8, 31.2, 22.8. HRMS (ESI+): 
m/z calcd for C23H22NO [M + H+]: 328.1696; found: 
328.1699.
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