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Abstract: The symmetry-breaking enolisation reaction of a meso-
piperidine diester using a chiral bis-lithium amide base allows ac-
cess to alkylated derivatives in highly diastereo- and enantioselec-
tive fashion (≥ 98% ee).
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Introduction

Over recent years there have been significant develop-
ments in the application of chiral lithium amide base reac-
tions to asymmetric synthesis.1 Typically, such reactions
involve a symmetry-breaking enolisation or metallation
process to give an enantiomerically enriched nucleophilic
intermediate, which can then be reacted with electrophiles
to give useful non-racemic products. Most of this chemis-
try involves enolisation of cyclic ketones, e.g. the synthe-
sis of enol silane 1,2 but more recently we have applied the
same principle to other systems, for example to generate
chiral organometallics such as 2,3 or the chiral phos-
pholane oxide 3.4

Most such enantioselective deprotonation reactions de-
scribed to date involve discrimination between enan-
tiotopic hydrogens activated by a single common
functional group. We expected that a considerable broad-
ening in the scope for applications of chiral lithium
amides would be possible if multifunctional substrates
could be employed. In this type of chiral base reaction the
acidic hydrogens would be activated by separate func-
tional groups.

We recently described a specific example of this concept,
involving the symmetry-breaking reactions of various
carbocyclic systems having a ring-fused imide, e.g. con-
version of the cyclopropane 4 into silylated product 6, me-
diated by chiral lithium amide 5, Scheme 1.5

Scheme 1

Here we describe the application of this symmetry-break-
ing concept to a very different situation, which has excit-
ing implications for the synthesis of chiral heterocyclic
systems.

Since a number of symmetrical heteroaromatic com-
pounds are readily available it is a simple matter to access
the corresponding saturated meso derivatives via highly
stereoselective hydrogenation. In our initial studies, we
have applied this approach to dipicolinic acid 7, as shown
in Scheme 2.

Scheme 2

Transformation of diacid 7 into a suitable symmetrical di-
ester 8 was carried out very straightforwardly as shown.6

Several related derivatives were prepared, having differ-
ent nitrogen protecting groups, but since the N–benzyl
compound 8 behaved well in initial deprotonation reac-
tions, all subsequent work was carried out with this series.

Initial chiral base studies with the simple lithium amide
base 5 gave rather poor results, and it was not until we
turned to the use of the bis-lithium amide base 9 that we
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achieved useful results. To our delight, treatment of 8 with
this base, followed by alkylation with benzyl bromide,
furnished product 10a in good yield as a single diastere-
omer, and in ≥98% ee.7,8 Similar excellent levels of dias-
tereocontrol and enantiocontrol were seen with a number
of other electrophiles, as indicated in the Table.9

Table  Asymmetric Alkylations of Diester 8

Aldol reactions with various carbonyl compounds have
also been attempted, but give less consistent results, and
to date we have not secured the stereochemical assign-
ments.10

Although the sense of enantioselectivity in the reaction of
diester 8 with bis-lithium amide 9 is not readily rationa-
lised, we can propose several explanations for the high de-
gree of diastereoselectivity in the alkylations of the
intermediate enolate, Figure.

Figure

If the exocyclic enolate has an equatorial disposition of
both the neutral amine group and the N-benzyl group then
selectivity may be determined mainly by the stereoelec-
tronic effect of the ring nitrogen as shown in structure A
(i.e. alkylation anti to the lone pair).11 Alternatively, if A1,3

strain considerations resulted in population of the N-in-
vertomer B, then the axial benzyl group provides an obvi-
ous source of facial shielding.12 

During the course of the alkylation studies we found that
enolisation of 8, followed simply by re-protonation by ad-
dition of MeOH, returned meso diester 8, along with the
corresponding C2-symmetric diastereomer 11, Scheme
3.13

The latter compound, although recovered in only 30 %
yield from this process, proved to have an ee of 89%. Con-
version of this diester into the known bis-benzyl ether 12
served to confirm the absolute configuration of this mate-

rial.14 Clearly, this finding has implications for the synthe-
sis of this type of trans-substituted piperidine (and
perhaps other types of heterocycle), which have important
applications as chiral auxiliaries,15 as well as being com-
ponents of natural products.16 To date, we have not yet ex-
plored the use of alternative protonating sources, which
might allow a more stereoselective access to 11, but this
is clearly an attractive possibility. 

A key aspect of the new enantioselective substitution
chemistry of 8 is that it should allow further regioselective
modification of the product ester groups. We anticipated
that this would be possible in simple examples by subse-
quent reaction at the unsubstituted, and therefore less hin-
dered, ester position. Starting with compound 10a,
Scheme 4 illustrates how this is possible for reduction us-
ing DIBAL-H, and for hydrolysis under typical basic con-
ditions.

Scheme 4

Clearly, further transformation of these systems is plausi-
ble, including the formation of additional rings, making
them attractive starting points for natural product synthe-
sis.

The new chiral base chemistry described above opens up
new opportunities for the synthesis of chiral piperidines in
a highly stereocontrolled fashion. We expect that analo-
gous possibilities exist for other ring sizes and for rings in-
corporating different heteroatoms and substitution
patterns, and we are actively pursuing these avenues.
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