Efficient Preparation of 1,2,4,5-Tetroxanes from Bis(trimethylsilyl) Peroxide and Carbonyl Compounds

Charles W. Jefford,* Amer Jaber John Boukouvalas,

Department of Organic Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland

Symmetrically 3,6-disubstituted and 3,3,6,6-tetrasubstituted 1,2,4,5-tetroxanes are prepared in good yields by the condensation of bis(trimethylsilyl) peroxide with aldehydes and ketones in the presence of trimethylsilyl trifluoromethanesulfonate.

In the course of a program aimed at synthesizing cyclic peroxides with potential antimalarial activity, we needed to prepare some 1,2,4,5-tetroxanes for comparison. As a class, they have attracted much attention, 2-6 for example, the dispiro derivatives serve as precursors to macrolactones used in perfumery. Despite numerous reports on the formation of 1,2,4,5tetroxanes, 2,3,8-12 few are of preparative value. The most 392 Communications synthesis

efficient method involves the acid-catalyzed condensation of hydrogen peroxide with ketones, ¹³⁻¹⁴ Unfortunately, its utility is limited by the potential hazard arising from the need to use concentrated solutions of hydrogen peroxide. ¹⁵

We now describe a convenient synthesis of 1,2,4,5-tetroxanes, which exploits a safer analogue of hydrogen peroxide, namely bis(trimethylsilyl) peroxide (2).¹⁶

The procedure entails the treatment of a carbonyl compound with peroxide 2 in the presence of a Lewis acid. Typically, cyclohexanone (1 a), 2, and trimethylsilyl trifluoromethanesulfonate (trimethylsilyl triflate) in acetonitrile at 0°C, furnished the dispiro-substituted tetroxane 3 a in 92% yield after purification (Table). A careful choice of solvent, temperature and catalyst is

1, 3–5	R^1 R^2		
a	–(CH	2)5 —	
b	-CH ₂ C(CH ₃) ₂ CH ₂ C(CH ₃) ₂ CH ₂ -		
c	$-(CH_2)_2O(CH_2)_2$		
d	CH ₃	CH ₃	
e	Н	$C_6 H_5$	
f	Н	n - C_5H_{11}	
g	Н	$n-C_0H_{19}$	

Table. Preparation of Symmetrically 3,6-Di- and 3,3,6,6-Tetrasubstituted 1,2,4,5-Tetroxanes 3 from Aldehydes and Ketones 1 and Bis(trimethylsilyl) Peroxide (2)

Tetro- xane	Yield ^a (%)	mp (°C)	Molecular Formula ^{b,c} and/ or Lit. mp (°C)	13 C-NMR ^d , δ C-3 and C-6
3a	92	128-130	128-13013	108.1 (s) ⁴
3b	65	183-184	184-186 ¹³	110.0 (s)
3e	87	157-158	$C_{10}H_{16}O_6$ (232.3)	106.1 (s)
3d	95	130-132	130-13212	107.5 (s)
3e	46	200201	201-2029	108.6 (d)
3f	64	5455	33-34 ⁹	
3g	51	66-67	$C_{12}H_{24}O_4$ (232.4) 47-50 ¹⁰ $C_{20}H_{40}O_4$ (344.6)	108.7 (d) 108.7 (d)

^a Yield of isolated pure product based on the carbonyl partner.

essential to suppress formation of ε-caprolactone 4a, which can arise by Baeyer-Villiger oxidation of the ketone¹⁷ or decomposition of 3a.¹⁸ In fact, the same reagents have been reported to give mainly 4a under milder conditions.¹⁷

The present procedure worked equally well with other ketones (1b-d) and aldehydes (1e-g) enabling the corresponding 1,2,4,5-tetroxanes 3b-g to be readily prepared in yields of 46-95% (Table). In all instances, traces of by-products such as 4a-g and trimeric peroxides 5a-g were easily removed by recrystallization.

The tetroxanes derived from aldehydes were produced in a stereocontrolled manner, since only the *trans*-3,6-disubstituted derivatives 3e-g were formed. As expected, the *trans* derivatives 3f, g were characterized by having nearly identical 1H -NMR signals for the methine protons $[\delta=5.87-5.88\ (t,\ 1\,H,\ J=5.2\,Hz)$ at 360 MHz in CDCl₃)]. Moreover, their structures, together with that of 3e, were further confirmed by correct microanalyses, molecular weights, and concordant ^{13}C -NMR data (Table). It is worth noting that as the previously reported melting points and 1H -NMR data for 3f and 3g are significantly different from ours $[\delta=5.68\ (t,\ J=4.5\,Hz)$ and $\delta=6.16\ (t,\ J=4.5\,Hz)$, respectively^{9,10}], the compounds cannot be the same.

This new method is simple to perform and provides a less hazardous preparation of symmetrically di- and tetrasubstituted 1,2,4,5-tetroxanes from readily available starting materials. Moreover, it demonstrates the utility of bis(trimethylsilyl) peroxide (2) as a peroxide-transfer agent.¹⁹

3,3,6,6-Tetramethyl-1,2,4,5-tetroxane (3d); Typical Procedure:

To a cool (0°C) solution of trimethylsilyl triflate (3.40 g, 15 mmol) in dry MeCN (3.5 mL), bis(trimethylsilyl) peroxide 16 (2; 2.70 g, 15 mmol) is added by syringe dropwise during 4 min under N_2 with stirring. Then, a solution of acetone (1d; 0.58 g, 10 mmol) in dry MeCN (1.5 mL) is introduced dropwise by syringe over 30 min. at 0°C. After stirring for 90 min. at 0°C, the reaction mixture is treated with a 10% aq. solution of NaHCO₃ (50 mL) followed by extraction with CH₂Cl₂ (3×30 mL). The combined extract is washed with brine (2×30 mL), dried (Na₂SO₄) and evaporated to give a colorless solid (0.74 g). Recrystallization from MeOH gives 3d (0.70 g, 95% yield) as a colorless solid; mp 130–132°C (Lit. 12 mp 130–132°C).

For the preparation of 3g, a mixture of MeOH and CHCl₃ is used for recrystallization. Brine instead of aq. NaHCO₃ is used for work-up of 3e-g.

The authors thank the Swiss National Science Foundation (grant No 2.812-0.85) for support of this work.

Received: 18 January 1988

- Jefford, C. W., Jaggi, D., Boukouvalas, J., Kohmoto, S. J. Am. Chem. Soc. 1983, 105, 6497.
 Jefford, C. W., Kohmoto, S., Boukouvalas, J., Burger, U. J. Am. Chem. Soc. 1983, 105, 6498.
 Jefford, C. W., Boukouvalas, J., Kohmoto, S. J. Chem. Soc. Chem. Commun. 1984, 523.
 Jefford, C. W., Boukouvalas, J., Kohmoto, S., Grant, H.G. Anal. Chim. Acta 1984, 157, 199.
 Jefford, C. W., Favarger, F., Ferro, S. Chambaz, D., Bringhen. A., Bernardinelli, G., Boukouvalas, J. Helv. Chim. Acta 1986, 69, 1778.
- (2) Schulz, M., Kirschke, K., in: Organic Peroxides, Vol. 3, Swern, D. (ed.), R.E. Krieger Publ. Co., Malabar, FL, 1972, reprint 1981, pp. 67-140.
- (3) Baily, P.S. Ozonation in Organic Chemistry, Vol. 1, Academic Press, New York, 1978.

^b In all cases, satisfactory microanalyses obtained: C, H $\pm 0.27\%$.

^c Mol. wt. determinations: 3c, 247; 3f, 221; 3g, 335.

d Recorded at 50 MHz on a Varian XL-200 spectrometer in CDCl₃, except for 3e (CD₂Cl₂).

- (4) Bladon, P., McCullough, K.J., Morgan, A.R., Nonhebel, D.C., Pauson, P.L., White, G.J. J. Chem. Res. (S) 1980, 284; (M) 1980, 3701, and references cited therein.
- (5) Miura, M., Nojima, M., Kusabayashi, S. J. Chem. Soc. Perkin Trans. I 1980, 1950.
- (6) Ito, Y., Tone, M., Yokoya, H., Matsuura, T., Schuster, G.B. J. Org. Chem. 1986, 51, 2240.
- (7) Nicolaou, K.C. Tetrahedron 1977, 33, 683.
- (8) Bartlett, P. D., Baumstark, A. L., Landis, M. E. J. Am. Chem. Soc. 1977, 99, 1890.
- (9) Miura, M., Nojima, M. J. Chem. Soc. Chem. Commun. 1979, 467. Miura, M., Nojima, M. J. Am. Chem. Soc. 1980, 102, 288.
- (10) Miura, M., İkegami, A., Nojima, M., Kusabayashi, S., McCullough, K.J., Walkinshaw, M.D. J. Chem. Soc. Perkin Trans. 1 1983, 1697.
- (11) Gäb, S., Turner, W.V. J. Org. Chem. 1984, 49, 2711.
- (12) Murray, R. W., Jeyaraman, R. J. Org. Chem. 1985, 50, 2847.
- (13) Sanderson, J.R., Zeiler, A.G., Wilterdink, R.J. J. Org. Chem. 1975, 40, 2239. Sanderson, J.R., Wilterdink, R.J., Zeiler, A.G. Synthesis 1976, 479
- (14) McCullough, K.J., Morgan, A.R., Nonhebel, D.C., Pauson, P.L., White, G.J. J. Chem. Res. (S) 1980, 34; (M) 1980, 0601.
- (15) Ando, T., Cork, D.G., Kimura, T. Chem. Lett. 1986, 665.
- (16) Taddei, M., Ricci, A. Synthesis 1986, 633.
- (17) Suzuki, M., Takada, H., Noyori, R. J. Org. Chem. 1982, 47, 902.
- (18) We found that 3a is converted to 4a upon treatment with trimethylsilyl triflate in CH₂Cl₂ at 0°C; when MeCN was used as solvent, the reaction was slower, probably owing to the poorer solubility of the tetroxane. For a related decomposition, see Ref. 5.
- (19) Salomon, M.F., Salomon, R.G. J. Am. Chem. Soc. 1979, 101, 4290.