PERIODIC CHANGE IN THE REACTIVITY OF THE 2-ALKOXYTETRAHYDRO-

- 2-PYRANYL RADICAL DURING HOMOLYTIC TRANSFORMATIONS OF
- 2-ALKOXYTETRAHYDROPYRANS AT PRESSURES UP TO 1000 MPa

V. M. Zhulin, I. Khuéidzha, V. S. Bogdanov, UDC 541.12.034:541.42:541.515:547.811 and Yu. D. Koreshkov

It has been observed that the relative rates of formation of lactone II and ester III, d[II; III]/d[TBA], depend in an undulatory manner on the degree of transformation of I, measured by [TBA].

$$[(CH_3)_3CO]_2 \longrightarrow 2(CH_3)_3CO'$$

$$DTBP$$

$$(CH_3)_3CO' + \bigcirc_{OR} \longrightarrow_{OR} + (CH_3)_3COH$$

$$R \longrightarrow CH_3 (Ia), R = C_2H_5 (Ib). (I') (TBA)$$

$$R \longrightarrow (I') \longrightarrow CH_2(CH_2)_3COOR \xrightarrow{(1)} CH_3(CH_2)_3COOR + (I)$$

$$(III)$$

The corresponding curves for Ia obtained by spline approximation [1] of the experimental dependences of [II] and [III] on [TBA] (32 points each) are presented in Fig. 1.

In conformity with this, the [II]/[III] ratio is determined not by the magnitude of pressure p, as proposed in [2], but rather by the amplitudes and phase shift of the d[II]/d[TBA] and d[III]/d[TBA] vibrations.

For pure Ia the [II]/[III] ratio decreases sharply up to [TBA] = 0.1 M, after which little change is observed (Fig. 1). A qualitatively similar pattern is observed for Ia and Ib in benzene (70 mole %). For pure Ib the [II]/[III] ratio depends only slightly on [TBA] because of the coherence of the d[II]/d[TBA] and d[III]/d[TBA] vibrations.

These results are explained by a periodic change in the ratio of the reactivities of radical I' with respect to cleavage of the endo- and exocyclic C-O bonds and to chain-termination reactions as the reaction products accumulate.

The methods used to carry out the experiments and the analysis of the products were given in [3].

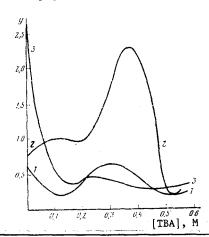


Fig. 1. Relative rates of formation of II and III and [II]/[III] ratio as a function of [TBA] for Ia $(130^{\circ}\text{C}, [DTBP]_{0} = 0.30 \text{ and } 0.65 \text{ M}, p = 20-500 \text{ MPa})$: 1) y = d[II]/d[TBA]; 2) y = d[III]/d[TBA]; 3) y = [II]/[III].

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1236-1237, May, 1991. Original article submitted January 15, 1991.

LITERATURE CITED

- 1. V. M. Zhulin, E. B. Kabotyanskaya, M. V. Kel'tseva, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 11, 2651 (1990).
- 2. E. V. Pastushenko, S. S. Zlotskii, M. Ya. Botnikov, et al., Zh. Prikl. Khim., <u>52</u>, No. 2, 453 (1979).
- 3. V. M. Zhulin, I. Khueidzha, E. B. Kabotyanskaya, and Yu. D. Koreshkov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1911 (1990).

SYNTHESIS OF NEW TYPES OF ORGANOSULFUR NITRO COMPOUNDS

O. P. Shitov, A. P. Seleznev, and V. A. Tartakovskii

UDC 542.91:547.279.5+ 547.416

We have synthesized for the first time analogs of sulfoxides and sulfones of the I-III type in which the oxygen atoms are replaced by N-nitroimido groups: $R_2 = \bar{N} - NO_2$ (I), $R_2 = \bar{N} - NO_2$ (II), and $R = \bar{N} - NO_2$ (III).

N-Nitrosulfylimides I were obtained by direct replacement of the oxygen atom by a nitroimido group by reaction of the sulfoxides with nitroamide in the presence of acetic anhydride or by an exchange reaction of iodonium N-nitroimides with dialkyl sulfides:

$$R^{1}R^{2}S \rightarrow O + H_{2}N - NO_{2} \xrightarrow{(CH_{2}CO)_{1}O} R^{1}R^{2}S - N - NO_{2}$$
(1)

 $R^1 = R^2 = Me$ (Ia), $R^1 = R^2 = Et$ (Ib), $R^1 = Me$, $R^2 = Ph$ (Ic), $R^1 = R^2 = Ph$ (Id).

$$o-NO_2C_6H_4IO + NH_2NO_2 \rightarrow o-NO_2C_6H_4I - N-NO_2 \xrightarrow{(CH_3)_4S} o-NO_2C_6H_4I + (CH_3)_2S - N-NO_2$$

N-Nitrosulfoximides II were synthesized by oxidation of I with $KMnO_4$ or H_2O_2 :

$$R^{1}R^{2}S - N - NO_{2} \xrightarrow{KMnO_{4} \text{ or } H_{2}O_{2}} R^{1}R^{2}S(O)N - NO_{2}$$

$$R^{1} = R^{2} = Me \text{ (II a)}, R^{1} = Me, R^{2} = Ph(IIb), R^{1} = R^{2} = Ph(IIc).$$

N,N'-Dinitrosulfodiimides III were obtained by nitration of unsubstituted sulfodiimides or their N,N'-bis(trimethylsilyl) derivatives with nitronium tetrafluoroborate or dinitrogen pentoxide in acetonitrile:

$$R^{1}R^{2}S(NR')_{2} + NO_{2}X \rightarrow R^{1}R^{2}S(N - NO_{2})_{2} + RX$$

$$R^1 = R^2 = Me$$
 (IIIa), $R^1 = R^2 = Ph$ (IIIb); $R' = H$, $Si(CII_3)_3$; $X = BF_4$, NO_3 .

Compounds I-III are stable crystalline substances, the structures of which were confirmed by the results of elemental analysis and data from the IR, UV, and PMR spectra and x-ray diffraction analysis.

N-Nitro-S,S-dimethylsulfylimide (Ia). This compound was obtained in 64.8% yield and had mp 56°C. PMR spectrum (CH₂Cl₂, δ , ppm): 2.82 (6H, CH₃). IR spectrum (ν , cm⁻¹): 1402, 1273 (N-NO₂). UV spectrum (CH₃OH, λ , nm, log ϵ): 255/3.99.

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1237-1238, May, 1991. Original article submitted January 30, 1991.