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An efficient synthetic method of o-terphenyls was developed from Morita–Baylis–Hillman adducts. The
synthesis was carried out via a sequential bromination of MBH adducts, Wittig reaction with various
aldehydes, 6p-electrocyclization, and a base-mediated aerobic oxidation process.
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The synthesis of poly-substituted benzene derivatives including
ortho- and para-terphenyls has received much attention.1–3 Among
the numerous approaches for these compounds, a sequential 6p-
electrocyclization of suitably-substituted 1,3,5-trienes to dihydro-
benzenes and a following oxidation process is one of the important
routes.4,5 The Z-stereochemistry at the 3-position of 1,3,5-trienes is
essential for the 6p-electrocyclization. Thus, the synthesis of
1,3(Z),5-trienes in a stereoselective manner is very important.

The Morita–Baylis–Hillman (MBH) adducts have been used
extensively for the synthesis of poly-substituted benzenes.2,3,6

Very recently, we reported a synthesis of p-terphenyls by a
Diels–Alder reaction of 1,3-diene that was prepared from MBH ad-
duct of benzaldehyde, as shown in Scheme 1.2 As a continuous
interest for the synthesis of terphenyls, we presumed that a Wittig
reaction of the MBH bromide of cinnamaldehyde could provide
1,3,5-triene 4a, and the triene could be used for the synthesis of
o-terphenyl 5a, as shown in Scheme 1. The two styryl moieties of
4a are positioned in the same direction around the 2,3-double
bond, although the systematic nomenclature of the double bond
is E, thus a 6p-electrocyclization of 4a could produce the interme-
diate I by a disrotatory ring-closure.

The MBH bromide 2a was prepared from the MBH adduct of
cinnamaldehyde 1a as reported.7,8 The preparation of a phosphonium
salt of 2a and the following Wittig reaction with benzaldehyde
(3a) in the presence of K2CO3 produced methyl 5-phenyl-2-
ll rights reserved.

: +82 62 530 3389.
styrylpenta-2,4-dienoate (4a) in moderate yield (64%).9,10 How-
ever, the E/Z selectivity (E/Z = 4:1) of the styryl substituent at the
2-position during the Wittig reaction was not high,9a and the
purification of 4a was somewhat difficult.9,10 Thus we examined
the reaction with an E/Z mixture of 4a in CH3CN in the presence
of K2CO3 under an O2 balloon atmosphere. To our delight, o-ter-
phenyl 5a was obtained in good yield (91%) via the 6p-electro-
cyclization to form a mixture of dihydrobenzene intermediate I
and its diastereomer, and a concomitant base-mediated aerobic
oxidation.2,5 The result stated that the preparation of 4a and
its conversion to 5a could be performed in a one-pot. Thus, we
examined a one-pot synthesis of 5a without isolation of the tri-
ene 4a. As shown in Scheme 2, the preparation of a phospho-
nium salt of 2a was carried out with PPh3 in CH3CN at room
temperature for 2 h. After monitoring the formation of a phos-
phonium salt on TLC, benzaldehyde (1.1 equiv) and K2CO3

(2.0 equiv) were added, and the reaction mixture was stirred
for 12 h at room temperature to form the triene intermediate
4a. The reaction mixture was then heated to reflux for 15 h un-
der O2 balloon atmosphere. The product 5a was obtained in a
one-pot reaction from 2a in moderate yield (55%).11 The yield
of 5a was similar to that of the two-step procedure (58%).

Encouraged by the results various o-terphenyl derivatives were
synthesized analogously, and the results are summarized in
Table 1. The reactions between 2a and various aldehydes such as
p-chlorobenzaldehyde (3b), p-anisaldehyde (3c), p-nitrobenzalde-
hyde (3d), and 4-biphenylcarboxaldehyde (3e) afforded the corre-
sponding o-terphenyls 5b–e in a one-pot reaction in reasonable
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Table 1
One-pot synthesis of o-terphenyl derivatives 5 from MBH bromides 2a,b

R1 COOMe
OH

R2

R1 COOMe

R2
R1 COOMe

R3

R1

R3R2

COOMe
Br

R2

(i): PBr3 (1.0 equiv), CH2Cl2, rt, 1 h (46-78%). (ii): PPh3 (1.1 equiv), MgSO4, CH3CN, rt, 2 h.
(iii): R3-CHO (3a-h, 1.1 equiv), K2CO3 (2.0 equiv), rt, 12-28 h. (iv): reflux, O2 balloon, 15-22 h.

i ii
iii

iv
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a MBH alcohols 1 and the corresponding MBH bromides 2 were prepared as reported.7,8 For 1a–e and 2a–e: a: R1 = Ph, R2 = H; b: R1 = p-MeOPh, R2 = H; c: R1 = p-FPh, R2 = H; d:
R1 = Ph, R2 = Me; e: R1 = Me, R2 = H. For 3a–h: a: R3 = Ph; b: R3 = p-ClPh; c: R3 = p-MeOPh; d: R3 = p-NO2Ph; e: R3 = p-PhPh; f: R3 = 4-pyridyl; g: R3 = 2-furyl; h: R3 = 5-Me-2-thienyl.

b The yield of o-terphenyl 5 is one of the three-step, one-pot reactions from MBH bromide 2.
c The corresponding MBH acetate was used instead of MBH bromide 2b for the Wittig reaction.
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yields (45–68%). The yield of 5c was somewhat low as compared to
other entries due to the formation of the hydrolysis product (vide
infra).10 Besides these arylaldehydes, the reactions between 2a and
4-pyridinecarboxaldehyde (3f), 2-furaldehyde (3g) and 5-methyl-
2-thiophenecarboxaldehyde (3h) afforded the corresponding prod-
ucts 5f–h in good yields (58–69%). The use of MBH bromides 2b-e8j

derived from p-methoxycinnamaldehyde, p-fluorocinnamalde-
hyde, a-methylcinnamladehyde, and crotonaldehyde showed sim-
ilar results, and o-terphenyls 5i–l were synthesized in good to
moderate yields (54–67%).

The reaction of MBH bromide 2f bearing an acetyl group
showed the same reactivity to produce 5m in moderate yield
(61%) with p-nitrobenzaldehyde, as shown in Scheme 3. As com-
pared to the stereochemistry of 2a–f, the MBH bromide 2g bearing
a nitrile moiety was formed in the opposite stereochemistry.8j

Thus, the intermediate triene 4g might have a wrong stereochem-
istry around the second double bond, and the 6p-electrocyclization
cannot occur. Actually, the reaction of 2g did not produce the cor-
responding o-terphenyl 5n in appreciable amount under the same
reaction conditions as expected.

In order to check the scope of the reaction, the reaction of 2a
was examined with n-hexanal although the expected product 5o
is not an o-terphenyl derivative, as shown in Scheme 4. The yield
of 5o was somewhat low (47%) as compared to o-terphenyls 5a–
m derived from arylaldehydes. As noted above, an appreciable
amount of methyl 2-methyl-5-phenylpenta-2,4-dienoate (6), the
reduction product of a phosphonium salt of 2a, were formed dur-
ing the Wittig reaction even in the presence of MgSO4.10c

In summary, various o-terphenyl derivatives were synthesized
in a one-pot reaction from MBH bromides of cinnamaldehydes
via a sequential Wittig reaction, 6p-electrocyclization, and a
base-mediated aerobic oxidation process.
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C, 72.06; H, 4.54; N, 4.20. Found: C, 72.31; H, 4.73; N, 4.11.
Compound 5g: 58%; colorless oil; IR (film) 2979, 1708, 1604, 1513, 1237 cm�1;
1H NMR (CDCl3, 300 MHz) d 3.89 (s, 3H), 5.56 (dd, J = 3.3 and 0.6 Hz, 1H), 6.16
(dd, J = 3.3 and 1.8 Hz, 1H), 7.18–7.22 (m, 2H), 7.26–7.34 (m, 5H), 7.90 (dd,
J = 8.1 and 1.8 Hz, 1H), 8.41 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d
52.23, 109.65, 111.34, 127.69, 128.09, 128.23, 128.43, 128.67, 129.38, 129.63,
130.97, 141.06, 141.86, 143.56, 151.80, 166.79; ESIMS m/z 279 [M+H]+. Anal.
Calcd for C18H14O3: C, 77.68; H, 5.07. Found: C, 77.49; H, 5.26.
Compound 5i: 54%; pale yellow solid, mp 90–92 �C; IR (KBr) 2952, 2926, 1721,
1309, 1265 cm�1; 1H NMR (CDCl3, 300 MHz) d 3.70 (s, 3H), 3.86 (s, 3H), 6.69
(d, J = 9.0 Hz, 2H), 6.99 (d, J = 9.0 Hz, 2H), 7.07–7.11 (m, 2H), 7.14–7.19 (m, 3H),
7.40 (d, J = 8.1 Hz, 1H), 7.97 (dd, J = 8.1 and 1.8 Hz, 1H), 8.01 (d, J = 1.8 Hz, 1H);
13C NMR (CDCl3, 75 MHz) d 52.13, 55.16, 113.46, 126.76, 128.04, 128.49,
128.75, 129.76, 130.60, 130.83, 131.89, 132.78, 140.54, 140.80, 144.66, 158.77,
166.97; ESIMS m/z 319 [M+H]+. Anal. Calcd for C21H18O3: C, 79.22;
H, 5.70. Found: C, 79.15; H, 5.98.
Compound 5l: 57%; pale yellow solid, mp 106–108 �C; IR (KBr) 2925, 1722,
1519, 1348 cm�1; 1H NMR (CDCl3, 300 MHz) d 2.25 (s, 3H), 3.85 (s, 3H), 7.32 (d,
J = 7.5 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.84 (s, 1H), 7.92 (d, J = 7.5 Hz, 1H), 8.24
(d, J = 8.4 Hz, 2H); 13C NMR (CDCl3, 75 MHz) d 20.62, 52.20, 123.56, 128.17,
129.43, 130.10, 130.53, 130.90, 139.72, 140.61, 147.08, 147.62, 166.69; ESIMS
m/z 272 [M+H]+. Anal. Calcd for C15H13NO4: C, 66.41; H, 4.83; N, 5.16. Found: C,
66.72; H, 4.90; N, 5.01.
Compound 5m: 61%; pale yellow solid, mp 136–138 �C; IR (KBr) 2951, 1714,
1593, 1515, 1342 cm�1; 1H NMR (CDCl3, 300 MHz) d 2.61 (s, 3H), 7.02–7.06
(m, 2H), 7.17–7.22 (m, 3H), 7.25 (d, J = 9.0 Hz, 2H), 7.51 (d, J = 8.1 Hz, 1H), 7.95
(d, J = 1.8 Hz, 1H), 7.99 (dd, J = 8.1 and 1.8 Hz, 1H), 8.03 (d, J = 9.0 Hz, 2H); 13C
NMR (CDCl3, 75 MHz) d 26.74, 123.35, 127.78, 128.42, 128.56, 129.55, 130.14,
130.63, 131.24, 136.32, 138.64, 139.44, 145.32, 146.72, 147.50, 197.31; ESIMS
m/z 318 [M+H]+. Anal. Calcd for C20H15NO3: C, 75.70; H, 4.76; N, 4.41. Found: C,
75.96; H, 4.73; N, 4.19.
Compound 5o: 47%; colorless oil; IR (film) 2951, 2924, 1721, 1250 cm�1; 1H
NMR (CDCl3, 300 MHz) d 0.73 (t, J = 6.6 Hz, 3H), 1.07–1.18 (m, 4H), 1.39–1.44
(m, 2H), 2.53 (t, J = 7.8 Hz, 2H), 3.87 (s, 3H), 7.16–7.24 (m, 3H), 7.28–7.38
(m, 3H), 7.81 (dd, J = 8.1 and 1.8 Hz, 1H), 7.90 (d, J = 1.8 Hz, 1H); 13C NMR
(CDCl3, 75 MHz) d 13.91, 22.28, 30.87, 31.54, 32.84, 52.08, 126.67, 127.24,
128.11, 128.88, 128.99, 130.14, 130.46, 140.72, 141.02, 146.47, 167.24; ESIMS
m/z 283 [M+H]+. Anal. Calcd for C19H22O2: C, 80.82; H, 7.85. Found: C, 80.67; H,
7.93.
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