Nickel(II) complexes with N,N,O-donor Schiff bases. Self-assembly to two-dimensional network via hydrogen bonding

Abhik Mukhopadhyay⁽¹⁾ and Samudranil Pal^{(1)*}

Received and accepted August 20, 2003

The syntheses, characterization and crystal structures of two mononuclear nickel(II) complexes are described. Reactions of Ni(O₂CCH₃)₂·4H₂O with the Schiff bases derived from 2-pyridinecarbaldehyde and ortho-aminophenol (Hpaap) and 2-pyridinecarbaldehyde and ortho-aminobenzoic acid (Hpaab) in methanolic media afford the complexes in good yields. The elemental analysis, magnetic moments, and spectral features of the complexes are consistent with the formulae [Ni(paap)₂]·CH₃COOH·H₂O and [Ni(paab)₂]·2H₂O. Crystal data for $[Ni(paap)_2] \cdot CH_3COOH \cdot H_2O$: monoclinic, $P2_1/c$, a = 9.675(2) Å, b = 17.109(5) Å, c =14.403(4) Å, $\beta = 92.903(11)^{\circ}$, V = 2381.1(11) Å³, and Z = 4 and for [Ni(paab)₂]·2H₂O: triclinic, $P\bar{1}$, a = 9.834(3) Å, b = 11.319(3) Å, c = 13.130(4) Å, $\alpha = 84.68(3)$, $\beta =$ $67.54(3), \gamma = 85.49(2)^{\circ}, V = 1343.4(6) \text{ Å}^3$, and Z = 2. In each complex, two tridentate monoanionic meridionally spanning ligands form a distorted octahedral N_4O_2 coordination sphere around the metal ion. In [Ni(paap)₂]·CH₃COOH·H₂O, two metal coordinated phenolate-O atoms are hydrogen bonded to CH₃COOH and H₂O, respectively. Intramolecular C-H...O interactions involving the water molecule and the C-H from azomethine and aromatic fragments lead to a two-dimensional network of [Ni(paap)2]·CH₃COOH·H₂O in the crystal lattice. An uncoordinated carboxylate O-atom in [Ni(paab)₂]·2H₂O is hydrogen bonded to both water molecules. One of the water molecules is again hydrogen bonded to the corresponding symmetry related water molecule forming a dimer. The azomethine groups and the metal coordinated carboxylate-O atoms in [Ni(paab)₂] are involved in intermolecular C-H···O interactions forming a chain-like arrangement of the molecules. The water dimers act as bridges between these chains and a two-dimensional network of $[Ni(paab)_2] \cdot 2H_2O$ is formed.

KEY WORDS: Nickel(II) complexes; Schiff bases; crystal structures; hydrogen bonding; self-assembly.

Introduction

Extended assemblies of complexed metal ions having one-, two-, and three-dimensional

networks are of considerable current interest due to their photophysical, magnetic and conducting properties.¹ These metallo-organic based materials are also attractive with respect to mimicking the structural and functional features of zeolites.² Self-assembly of transition metal ion complexes into a desired structural network has been realized by utilizing the metal

⁽¹⁾ School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.

^{*}To whom correspondence should be addressed; e-mail: spsc@ uohyd.ernet.in.

ion's preference for a particular coordination geometry, design and use of suitable ligands and weak noncovalent intermolecular interactions such as van der Waals interactions, hydrogen bonding and $\pi - \pi$ interactions.¹⁻³ The proton of polarized azomethine (-CH=N-) group in metal coordinated Schiff bases may help in self-assembly of the complex molecules by participating in intermolecular hydrogen bonding.⁴ The acceptor atom in this type of hydrogen bonding can be a part of the complex molecule or of the solvent molecule trapped in the crystal lattice. Thus the resulting network pattern can be influenced by the orientation of the acceptor atom with respect to the azomethine moiety. Herein, we report the syntheses, characterization and crystal structures of two hexacoordinated nickel(II) complexes with Schiff bases obtained by condensation reactions of 2-pyridinecarbaldehyde with *ortho*-aminophenol (Hpaap) and with ortho-aminobenzoic acid (Hpaab). In the

deprotonated state, these Schiff bases can coordinate a metal ion via the pyridine-N, the imine-N and the phenolate-O (paap⁻) or the carboxylate-O (paab⁻). The paap⁻ will form two five-membered chelate rings, whereas the paab⁻ will form one six- and one fivemembered chelate ring. The complexes have been isolated as [Ni(paap)₂]·CH₃COOH·H₂O and [Ni(paab)₂]·2H₂O. In the crystal lattice, both species form two-dimensional network via hydrogen bonding interactions involving the polarized azomethine moieties and the water molecules.

Experimental

Materials and physical measurements

The chemicals and solvents used in this work were of analytical grade available commercially and were used without further purification.

Microanalytical (C, H, N) data were obtained with a Perkin-Elmer Model 240C elemental analyzer. Room temperature solid state magnetic susceptibilities were measured by using a Sherwood Scientific magnetic susceptibility balance. Diamagnetic corrections calculated from Pascal's constants⁵ were used to obtain the molar paramagnetic susceptibilities. Solution electrical conductivities were measured with a Digisun DI-909 conductivity meter. Infrared spectra were collected by using KBr pellets on a Jasco-5300 FT-IR spectrophotometer. Electronic spectra were recorded on a Shimadzu 3101-PC UV/vis/NIR spectrophotometer.

Synthesis of [Ni(paap)₂]·CH₃COOH·H₂O

To a methanol solution (20 mL) of 2-aminophenol (230 mg, 2.1 mmol), 0.2 mL (225 mg, 2.1 mmol) of 2-pyridinecarbaldehyde was added and the mixture was refluxed for 1.5 h. Powdered $Ni(O_2CCH_3)_2 \cdot 4H_2O$ (260 mg, 1.05 mmol) was added to the clear light yellow solution. The resulting red mixture was refluxed for another 1.5 h and then cooled to room temperature. The red-brown crystalline solid separated was collected by filtration, washed with ice-cold methanol and finally dried in air. Yield obtained was 470 mg (84%). A single crystal suitable for X-ray structure determination was selected from this material. Anal. Calcd for C₂₆H₂₄N₄O₅Ni: C, 58.77; H, 4.55; N, 10.54%. Found: C, 58.43; H, 4.39; N, 10.29%. Selected infrared bands (cm⁻¹): 3046 br, 1703 s, 1586 s, 1559 m, 1537 m, 1479 s, 1456 s, 1362 m, 1317 m, 1300 w, 1281 s, 1250 m, 1184 m, 1144 s, 1044 m, 864 m, 806 m, 756 s, 637 w, 586 w, 515 s, 447 w, 417 w. Electronic spectral data in CH₃OH solution $(\lambda_{max}, nm (\varepsilon, M^{-1} cm^{-1})): 855 (23), 480 (18,800), 323 (21,000), 241 (21,100).$ Solid state magnetic moment at 300 K (μ_{eff}, μ_B): 3.17.

Synthesis of $[Ni(paab)_2] \cdot 2H_2O$

 $[Ni(paab)_2] \cdot 2H_2O$ was prepared in methanolic medium from 2-aminobenzoic acid, 2pyridinecarbaldehyde and Ni(O₂CCH₃)₂·4H₂O (2:2:1 mole ratio) as brown microcrystalline solid in 75% yield by following the same procedure as described above. Single crystal suitable for Xray structure determination was obtained directly from the synthetic reaction mixture. Anal. calcd. for C₂₆H₂₂N₄O₆Ni: C, 57.26; H, 4.07; N, 10.27%. Found: C, 57.05; H, 3.96; N, 10.14%. Selected infrared bands (cm^{-1}) : 3397 br, 1589 s, 1560 s, 1483 m, 1441 m, 1358 s, 1236 w, 1153 w, 1101 w, 1049 m, 1017 m, 918 s, 864 s, 824 s, 777 s, 745 m, 692 s, 640 m, 579 w, 546 w, 488 w, 417 m. Electronic spectral data in CH₃OH solution (λ_{max} , nm $(\varepsilon, M^{-1} cm^{-1})$: 900 (15), 350sh (15,300), 328 (19, 800), 243sh (16,700). Solid state magnetic moment at 300 K (μ_{eff} , μ_{B}): 3.19.

X-ray crystallography

For each of the two complexes, the crystal was mounted at the end of a glass fibre and covered with a thin layer of epoxy. The data were collected on an Enraf-Nonius Mach-3 single crystal diffractometer using graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å) by ω -scan method. Unit cell parameters of [Ni(paap)₂]·CH₃COOH·H₂O and [Ni(paab)₂]·2H₂O were determined by the least-squares fit of 25 reflections having 2θ values in the range 19-21° and 18-22°, respectively. Stability of the crystal was monitored by measuring the intensities of three check reflections after every 1.5h during the data collection. No decay was observed in either case. $[Ni(paap)_2] \cdot CH_3COOH \cdot H_2O$ and $[Ni(paab)_2] \cdot 2H_2O$ crystallize in $P2_1/c$ and $P\overline{1}$ space group, respectively. In each case, the position of the unique nickel atom was determined from a Patterson map. The remaining nonhydrogen atoms were determined from successive Fourier difference syntheses. The model was then refined by full-matrix least-squares procedures on F^2 . For both structures all the non-hydrogen atoms were refined anisotropically. The hydrogen atoms of the water molecule and the -COOH goup in [Ni(paap)₂]·CH₃COOH·H₂O were located in a difference map. For [Ni(paab)₂]·2H₂O hydrogen atoms of only one water molecule could be located in a difference map. For each structure all the hydrogen atoms were included in the model at idealized positions for structure factor calculation, but not refined. Calculations were done using the programs of WinGX⁶ for data reduction, and SHELX-97 programs⁷ for structure solution and refinement. The Ortex6a⁸ and Platon⁹ packages were used for molecular graphics. Significant crystal data are summarized in Table 1.

Results and discussion

Synthesis and some properties

Two new hexacoordinated nickel(II) complexes have been synthesized in good yields by reacting one mole equivalent of Ni(O₂CCH₃)₂. 4H₂O with the Schiff bases Hpaap and Hpaab preformed in methanolic media by refluxing 2 mole equivalents each of 2-pyridinecarbaldehyde and the corresponding ortho substituted anilines. The elemental analysis data for the isolated crystalline solids are consistent with the formulae $[Ni(paap)_2] \cdot CH_3COOH \cdot H_2O$ and $[Ni(paab)_2] \cdot$ $2H_2O$. The solid state room temperature (300 K) magnetic moments of [Ni(paap)₂]·CH₃COOH· H₂O and [Ni(paab)₂]·2H₂O are 3.17 and 3.19 $\mu_{\rm B}$, respectively. These values are consistent with an S = 1 spin state of the metal ion in each complex. Both species are electrically nonconducting in methanol solutions. Thus the ligands are monoanionic and the oxidation state of the metal ion is +2 in each complex.

Compound	[Ni(paap) ₂]·CH ₃ COOH·H ₂ O	[Ni(paab)2]·2H2O
CCDC deposition no.	216554	216555
Empirical formula	NiC ₂₆ H ₂₄ N ₄ O ₅	NiC ₂₆ H ₂₂ N ₄ O ₆
Crystal system	Monoclinic	Triclinic
Space group	$P2_{1}/c$	$P\overline{1}$
Unit cell dimensions		
a (Å)	9.675(2)	9.834(3)
<i>b</i> (Å)	17.109(5)	11.319(3)
<i>c</i> (Å)	14.403(4)	13.130(4)
α (°)	90	84.68(3)
β (°)	92.903(11)	67.54(3)
γ (°)	90	85.49(2)
$V(Å^3)$	2381.1(11)	1343.4(6)
Ζ	4	2
$\rho_{\text{calcd.}} (\text{g cm}^{-3})$	1.482	1.348
$\mu \text{ (mm}^{-1})$	0.861	0.768
Reflections collected	4287	4487
Unique reflections	4033	4487
R _{int}	0.214	0.00
Reflections $(I > 2\sigma(I))$	2594	2797
Parameters	326	334
<i>R</i> 1, <i>wR</i> 2 ($I > 2\sigma(I)$)	0.0747, 0.1899	0.0790, 0.1908
R1, wR2 (all data)	0.1206, 0.2249	0.1292, 0.2275
Goodness-of-fit on F^2	1.060	1.009
Largest peak, hole (e $Å^{-3}$)	0.747, -0.748	0.694, -0.392

 Table 1. Crystallographic Data

Infrared and electronic spectral characteristics

The infrared spectrum of $[Ni(paap)_2]$. CH₃COOH·H₂O displays a broad band centered at 3046 cm^{-1} and a strong band at 1703 cm^{-1} . These two bands are ascribable to the carboxyl group¹⁰ of the acetic acid molecule that is hydrogen bonded to the metal coordinated phenolate-O of one of the two ligands (vide infra). The strong and sharp band observed at 1586 cm⁻¹ is most likely due to the azomethine C=N stretching.¹¹ The medium to strong bands in the range 1559- $1456 \,\mathrm{cm}^{-1}$ are possibly due to the vibrations associated with the aromatic C=C fragments of the ligands.¹¹ The broad band observed at 3397 cm⁻¹ in the infrared spectrum of [Ni(paab)₂]·2H₂O is most likely due to the lattice water molecules.¹² The origin of the strong band with a shoulder at 1589 cm^{-1} and another strong band at 1358 cm^{-1} might involve the metal coordinated carboxylate functionalities present in the ligands. The former is assigned to the v_{as} stretch and the latter is assigned to the v_s stretch.¹³ The shoulder at the higher energy band is possibly due to the -HC=N- group of the ligand. Like $[Ni(paap)_2]\cdot CH_3COOH\cdot H_2O$, $[Ni(paab)_2]\cdot 2H_2O$ also displays medium to strong bands in the range 1560–1441 cm⁻¹ attributable to the aromatic parts of the ligands.

In solutions, methanol [Ni(paap)₂]. $CH_3COOH \cdot H_2O$ and $[Ni(paab)_2] \cdot 2H_2O$ display a weak absorption at 855 and 900 nm, respectively. This absorption is assigned to the v_1 transition for an octahedral nickel(II) complex.¹⁴ The difference in this band position suggests that paap⁻ is a stronger ligand than paab⁻. The other two coordinating atoms being same in both ligands the better σ -bonding ability of the phenolate-O compared to that of the carboxylate-O is likely to be one of the major reasons for this observation. In addition to this weak absorption, both complexes display three intense absorptions in the range 480-240 nm. These higher energy absorptions are most likely due to ligand-to-metal charge transfer and intraligand transitions.

Fig. 1. Structure of [Ni(paap)₂]·CH₃COOH·H₂O with the atom-labeling scheme. All non-hydrogen atoms are represented by their 15% probability thermal ellipsoids. Hydrogen bonding interactions are shown by dashed lines.

Description of structures

The structures of [Ni(paap)₂]·CH₃COOH· H_2O and $[Ni(paab)_2] \cdot 2H_2O$ are depicted in Figs. 1 and 2, respectively. In each complex, the tridentate ligands bind the metal ion meridionally and form a N_4O_2 coordination sphere. The bond parameters associated with the metal ion (Tables 2 and 3) indicate a distorted octahedral coordination geometry. The average chelate bite angle (78.23°) in the five-membered ring formed by the pyridine-N and the imine-N in $[Ni(paap)_2]$ is slightly smaller than that (80.57°) in [Ni(paab)₂]. The same for the other five-membered ring constituted by the imine-N and the phenolate-Oin $[Ni(paap)_2]$ is 81.32° . On the other hand, for [Ni(paab)₂] the average chelate bite angle (89.36°) in the six-membered ring formed by the imine-N and the carboxylate-O is very close to the ideal value of 90°. As a consequence, the average trans N-Ni-O angle (169.62°) in [Ni(paab)₂] is significantly larger than that (159.41°) in [Ni(paap)₂]. However, the *trans*

Fig. 2. Structure of $[Ni(paab)_2]$ - $2H_2O$ with the atomlabeling scheme. All non-hydrogen atoms are represented by their 15% probability thermal ellipsoids. Hydrogen bonding interactions are shown by dashed lines.

N(imine) - Ni - N(imine) angles are very similar in both complexes. The values are 176.13(19) and $176.6(2)^{\circ}$ for [Ni(paap)₂] and [Ni(paab)₂], respectively. The Ni-N(pyridine), Ni-N(imine), Ni-O(phenolate), and Ni-O(carboxylate) bond distances observed in these complexes are within the range reported for nickel(II) complexes having the same coordinating atoms.^{14a,15} In [Ni(paap)₂]·CH₃COOH·H₂O, the acetic acid molecule is hydrogen bonded to one of the phenolate-O atoms (Fig. 1). The O1...O3 distance and the O1…H-O3 angle are 2.605(8) Åand 148.54°, respectively. The water molecule is hydrogen bonded with the other phenolate-O atom. The O2…O5 distance and the O2…H-O5 angle are 2.721(8) Åand 112.23°, respectively. On the other hand, both water molecules are hydrogen bonded to the same uncoordinated carboxylate-O

Bond distances (Å)			
Ni-N(1)	2,114(5)	Ni - N(4)	2.005(5)
Ni - N(2)	2.007(5)	Ni = O(1)	2.053(4)
Ni-N(3)	2.122(5)	Ni-O(2)	2.086(4)
Bond angles (°)			
N(1) - Ni - N(2)	78.17(19)	N(2) - Ni - O(2)	98.65(19)
N(1) - Ni - N(3)	90.0(2)	N(3) - Ni - N(4)	78.3(2)
N(1) - Ni - N(4)	105.68(19)	N(3) - Ni - O(1)	91.51(19)
N(1) - Ni - O(1)	159.01(18)	N(3) - Ni - O(2)	159.82(18)
N(1) - Ni - O(2)	92.99(18)	N(4) - Ni - O(1)	95.12(18)
N(2) - Ni - N(3)	101.5(2)	N(4) - Ni - O(2)	81.64(19)
N(2) - Ni - N(4)	176.13(19)	O(1) - Ni - O(2)	92.77(18)
N(2) - Ni - O(1)	81.01(18)		

Table 2. Selected Bond Parameters for [Ni(paap)2]·CH3COOH·H2O

in $[Ni(paab)_2] \cdot 2H_2O$ (Fig. 2). The O2...O5 and O2...O6 distances are 2.728(13) and 3.25(2) Å, respectively. The O2...H—O5 angle is 143.28°. There is no interaction between the two water molecules.

Hydrogen bonding and self-assembly

The self-assembly of $[Ni(paap)_2]$ · CH₃COOH·H₂O and $[Ni(paab)_2]$ ·2H₂O via intermolecular hydrogen bonding interactions leads to the two-dimensional network in each case (Figs. 3 and 4). For $[Ni(paap)_2]$ ·CH₃COOH·H₂O acetic acid has no role in the formation of the network. As mentioned before it is only connected to one of the phenolate-O in $[Ni(paap)_2]$ through a hydrogen bond. In the crystal lattice, the water molecules are the basic units for linking the [Ni(paap)₂]·CH₃COOH units into a twodimensional arrangement (Fig. 3). Each water molecule acts as the bridge between three of these units by participating in three hydrogen bonding interactions. These are one O-H--O and two C-H···O interactions. In the O-H···O interaction, the O-atom of the water molecule acts as the donor atom and the phenolate-O of one $[Ni(paap)_2]$ moiety acts as the acceptor atom (vide supra). In the C-H...O interactions, the water O-atom acts as the acceptor atom. The aromatic C-atom (C20) meta to the phenolate-O of the second [Ni(paap)₂] unit and the C-atom (C6) of the azomethine fragment of the third [Ni(paap)₂] unit act as the donor atoms in these two hydrogen bonds. The C20...O5 and C6...O5 distances are 3.364(10) and 3.424(8) Å,

Table 3. Selected Bond Parameters for [Ni(paab)₂]·2H₂O

Bond distances (Å)			
Ni-N(1)	2.085(5)	Ni-N(4)	2.045(5)
Ni-N(2)	2.064(4)	Ni-O(1)	2.011(5)
Ni-N(3)	2.079(5)	Ni-O(3)	2.011(5)
Bond angles (°)			
N(1) - Ni - N(2)	81.26(19)	N(2) - Ni - O(3)	92.20(18)
N(1) - Ni - N(3)	96.09(18)	N(3) - Ni - N(4)	79.89(19)
N(1) - Ni - N(4)	96.00(19)	N(3) - Ni - O(1)	87.6(2)
N(1) - Ni - O(1)	169.87(18)	N(3) - Ni - O(3)	168.38(18)
N(1) - Ni - O(3)	90.4(2)	N(4) - Ni - O(1)	93.94(18)
N(2) - Ni - N(3)	98.31(19)	N(4) - Ni - O(3)	89.86(19)
N(2) - Ni - N(4)	176.6(2)	O(1) - Ni - O(3)	87.7(2)
N(2) - Ni - O(1)	88.87(19)		

Fig. 3. A view of the two-dimensional network of $[Ni(paap)_2]$ ·CH₃COOH·H₂O along the *a*-axis. The acetic acid molecules are not shown for clarity.

respectively. The corresponding C-H...O angles are 161.19 and 163.81°, respectively.

In the self-assembly of $[Ni(paab)_2]\cdot 2H_2O$, the azomethine groups of the ligands play the crucial role. Two azomethine fragments and the two metal coordinated carboxylate-*O* atoms in

Fig. 4. Two-dimensional network of [Ni(paab)₂]·2H₂O. For clarity the water molecule having no role in the formation of the network is not shown.

each [Ni(paab)2] molecule are involved in two pairs of reciprocal C-H...O interactions with its two neighbours on both sides (Fig. 4). The C6...O3 and C19...O1 distances are 3.172(7)and 3.256(7) Å, respectively. The corresponding C-H···O angles are 142.95 and 150.32°, respectively. Due to these interactions $[Ni(paab)_2]$ molecules exist in a chain-like arrangement. Both water molecules are hydrogen bonded to one of the uncoordinated carboxylate-O atoms (vide supra). The O-atom (O6) of one of these two water molecules is at a distance of 3.10(3) Å from the O-atom of the corresponding symmetry related water molecule. This distance suggests that they exist as a hydrogen bonded water dimer. These water dimers provide the bridges between the chains of [Ni(paab)₂]·H₂O moieties (Fig. 4) and complete the two dimensional network of $[Ni(paab)_2] \cdot 2H_2O.$

Acknowledgments

X-ray crystallographic studies were performed at the National Single Crystal Diffractometer Facility, School of Chemistry, University of Hyderabad (funded by the Department of Science and Technology, New Delhi). We thank the University Grants Commission, New Delhi for the facilities provided under the Universities with Potential for Excellence program. Mr. A. Mukhopadhyay thanks the Council of Scientific and Industrial Research, New Delhi for a research fellowship.

References

(a) Proceedings of the Inorganic Crystal Engineering (Dalton Discussion No. 3) J. Chem. Soc., Dalton Trans. 2000, 3705–3998; (b) Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, 1995; (c) Marks, T.J. Angew. Chem. Int. Ed. Engl. 1990, 29, 857; (d) Mallah, T.; Thiébault, S., Verdaguer, M.; Veillet, P. Science 1993, 262, 1554; (e) Schoentjes B.; Lehn, J.-M. Helv. Chim. Acta 1995, 78, 1; (f) Kahn, O. (Ed.). Magnetism: A Supramolecular Function: Vol. C-484, NATO ASI Series; Kluwer: Dordrecht, 1996; (g) Clemente-León, M.; Coronado, E.; Delhaes, P.; Galán Mascarós, J.R.; Gómez-García, C.J.; Mingotaud, C. In Supramolecular Engineering of Synthetic Metallic Materials. Conductors and Magnets: Vol. C-518, NATO ASI Series; Veciana, J.; Rovira, C.; Amabilino, D.B.,

Eds.; Kluwer, Dordrecht, 1998; pp. 291–312. (h) Kahn, O.; Martinez, C.J. *Science* **1998**, *279*, 44; (i) Evans, O.R.; Lin, W. *Acc. Chem. Res.* **2002**, *35*, 511.

- (a) Carlucci, L.; Cianni, G.; Proserpio, D.M.; Rizzato, S. *Chem. Commun.* 2000, 1319; (b) Moon, M.; Kim, I.; Lah, M.S. *Inorg. Chem.* 2000, *39*, 2710; (c) Ghoshal, D.; Maji, T.K.; Mostafa, G.; Lu, T.-H.; Ray Chaudhuri, N. *Cryst. Growth Des.* 2003, *3*, 9.
- (a) Baxter, P.N.W.; Lehn, J.-M.; Kneisel, B.O.; Fenske, D. Angew. Chem. Int. Ed. Engl. 1997, 36, 1978; (b) Braga, D.; Grepioni, F.; Desiraju, G.R. Chem. Rev. 1998, 98, 1375; (c) Puddephatt, R.J. Chem. Commun. 1998, 1055; (d) Yaghi, O.M.; Li, H.; Davis, H.C.; Richardson, D.; Groy, T.L. Acc. Chem. Res. 1998, 31, 474; (e) Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885.
- 4. (a) Sangeetha, N.R.; Pal, S. *Polyhedron* 2000, *19*, 1593; (b) Pal, S.N.; Radhika, K.R.; Pal, S. *Z. Anorg. Allg. Chem.* 2001, 627, 1631; (c) Heinze, K. *J. Chem. Soc., Dalton Trans.* 2002, 540; (d) Heinze, K.; Jacob, V. *J. Chem. Soc., Dalton Trans.* 2002, 2379.
- Hatfield, W.E. in *Theory and Applications of Molecular Paramagnetism*; Boudreaux E.A.; Mulay, L.N. Eds.; Wiley: New York, 1976, p. 491.
- 6. Farrugia, L.J. J. Appl. Crystallogr. 1999, 32, 837.

- Sheldrick, G.M. SHELX-97, Structure Determination Software; University of Göttingen: Göttingen, Germany, 1997.
- 8. McArdle, P. J. Appl. Crystallogr. 1995, 28, 65.
- 9. Spek, A.L. *PLATON-A Multipurpose Crystallographic Tool*; Utrecht University: Utrecht, The Netherlands, 2002.
- Kemp, W. Organic Spectroscopy; ELBS/Macmillan: Hong Kong, 1987; p 60.
- (a) Sreerama, S.G.; Pal, S.N.; Pal, S. Inorg. Chem. Commun. 2001, 4, 656; (b) Pal, S.N.; Pal, S. Polyhedron 2003, 22, 867.
- 12. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: New York, 1986, p 228.
- 13. Sangeetha, N.R., Pal, S. Polyhedron 2000, 19, 1593.
- (a) Karunakar, G.V.; Sangeetha, N.R.; Susila, V.; Pal, S. J. Coord. Chem. 2000, 50, 51; (b) Mukhopadhyay, S.; Ray, D. J. Chem. Soc., Dalton Trans. 1995, 265.
- (a) Seth, S.; Chakraborty, S. Acta Cryst., Sect. C 1984, 40, 1530; (b) Moore, M.H.; Nassimbeni, L.R.; Niven, M.L. J. Chem. Soc., Dalton Trans. 1987, 2125; (c) van der Merwe, M.J.; Boeyens, J.C.A.; Hancock, R.D. Inorg. Chem. 1983, 22, 3489; (d) Coronado, E.; Drillon, M.; Fuertes, A.; Beltran, D.; Mosset, A.; Galy, J. J. Am. Chem. Soc. 1986, 108, 900; (e) Aono, T.; Wada, H.; Aratake, Y.; Matsumoto, N.; Ökawa, H.; Matsuda, Y. J. Chem. Soc., Dalton Trans. 1996, 25.