CHEMISTRY LETTERS, pp. 921-922, 1988.

Synthesis of (R)-(+)-4-Butyl-2,6-cycloheptadienone, a Constituent of Marine Algae

Morio ASAOKA,^{*} Kazuya TAKENOUCHI, and Hisashi TAKEI Department of Life Chemistry, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227

The title compound was synthesized from (R)-(-)-5-trimethylsilyl-2-cyclohexenone in 19% overall yield.

(+)-4-Butyl-2,6-cycloheptadienone (1) was isolated as a minor constituent of the essential oil of Hawaiian Dictyopteris. The unique dihydrotropone derivative is a metabolite of the structurally related dictyopterene C' and the structure was confirmed by the derivatization from natural dictyopterene C'.¹⁾

In this paper we will describe a short step synthesis of the above compound by utilizing (R)-(-)-5-trimethylsilyl-2-cyclohexenone (2).²⁾

First, the synthetic route A was examined by using racemic 2 (Scheme 1). The route involves the Simmons-Smith type cyclopropanation of enol silyl ether 3, which was obtained in 93% yield by 1,4-addition of butylmagnesium bromide to 2 in the presence of chlorotrimethylsilane,^{2,3)} and subsequent oxidative ring opening as a ring expansion method. Among cyclopropanation conditions of 3 examined, the use of $CH_2I_2-Et_2Zn^4$ in benzene at 0 °C-rt gave the best result. Oxidative ring opening of 4 with FeCl₃⁵⁾ and dehydrochlorination afforded cycloheptenone derivative 6 in 77% overall yield from 3.

Disappointingly, oxidative removal of TMS group from 6 under various reported conditions⁶) resulted in a failure. After further trials, the conversion was accomplished by three-step operation to give the desired dienone 1, but the yield was low (28%). Therefore, alternative route was examined by using $(\pm)-2$. The second route (route B) involves the removal of TMS group in an early stage. Hydrolysis of crude enol silyl ether 3 with KF and subsequent removal of TMS group under oxidative conditions (CuCl₂ in DMF)⁷) gave enone 8 in 85% overall yield from 2. After the conversion of 8 to the enol silyl ether 9 (84%), cyclopropanation followed by oxidative ring cleavage and dehydrochlorination gave expected dienone $(\pm)-1$ in 44% overall yield from 9.

Thus, the synthesis of (R)-(+)-1 was carried out by the second route. The 1,4-addition of butylmagnesium bromide to (R)-(-)-2 proceeded in a stereospecific manner to give ketone (+)-7 $[[\&]_D^{22}+78.3^{\circ}(c\ 2.17,\ CHCl_3)]$ in 99% yield.^{2,7)} Removal of TMS group gave cyclohexenone (-)-8 [85%, $[\&]_D^{22}-51.2^{\circ}(c\ 1.40,\ CHCl_3)]$ which was converted to enol silyl ether 9. Cyclopropanation of 9 followed by oxidative ring opening with FeCl₃, and dehydrochlorination furnished (R)-(+)-1⁸) [22% from (-)-8, $[\&]_D^{15}+35.8^{\circ}(c\ 3.34,\ MeOH).^9)$ To confirm the optical purity of synthesized (R)-(+)-1, it was hydrogenated and converted to acetal derivative of

2(R), 3(R)-butane diol 12 (98% yield). Comparison of the 13 C-NMR spectrum of 12 with that of the corresponding acetal derivative obtained from (<u>+</u>)-1 indicated optical homogeneity of 12.

a)BuMgBr, cat. CuBr, TMSCl, HMPT; b)CH₂I₂, Et₂Zn; c)FeCl₃, DMF; d)AcONa; e)LDA/NCS/TBAF; f)KF, MeOH; g)CuCl₂, DMF; h)LDA/TMSCl; i)CH₂I₂, Et₂Zn; j)FeCl₃, DMF; k)AcONa.

This work was financially supported by Grant-in Aid from the Ministry of Education.

References

1) R. E. Moore and G. Yost, Chem. Commun., <u>1973</u>, 937. 2) M. Asaoka, K. Shima, and H. Takei, Tetrahedron Lett., <u>28</u>, 5669 (1987). 3) Y. Horiguchi, S. Matsuzawa, E. Nakamura, and I. Kuwajima, Tetrahedron Lett., <u>27</u>, 4025 (1986). 4) J. Furukawa, N. Kawabata, and J. Nishimura, Tetrahedron, <u>24</u>, 53 (1968). 5) Y. Itoh, S. Fujii, and T. Saegusa, J. Org. Chem., <u>41</u>, 2073 (1976). 6) I. Fleming and J. Goldhill, J. Chem. Soc., Perkin Trans. 1, <u>1980</u>, 1943; J. Ager, I. Fleming, and S. K. Patel, ibid., <u>1980</u>, 2520; I. Fleming and D. A. Perry, Tetrahedron, <u>37</u>, 4027 (1981) and references cited therein. 7) M. Asaoka, K. Shima, and H. Takei, J. Chem. Soc., Chem. Commun., in the press. 8) The structure was confirmed by ¹H-NMR, ¹³C-NMR, and IR spectra and elemental analysis. 9) Lit.¹⁾ [α]_D+96°(isooctane-MeOH). (Received February 26, 1988)