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SYNTHETIC COMMUNICATIONS, 2 1 ( 1 7 ) ,  1797-1802 (1991)  

SYNTHESIS OF NONRACEMIC 2-VINYL-MONOPROTECTED 1,3- 
DIOLS FROM THE REACTIONS OF CHIRAL ALLYLSTANNANES 

WITH ALDEHYDES 

Benjamin W. Gung*, Andrew J. Peat 
Department of Chemistry, Miami University, Oxford, Ohio 4.5056 

Abstract: A new approach for the synthesis of 2-vinyl monoprotected 1,3-diols 
has been developed. By employing different Lewis acid, either anti-anti or anti-syn 
stereoisomer can be selectively prepared. 

The synthetic utilities of chiral allylstannanes have been demonstrated by 
Marshall et a1.l Our recent studies have involved variations in the structures of the 
allylstannanes, and the influence of such variations on diastereoselectivity of 
additions to aldehydes2 It was discovered that allylstannane I gives much better 
diastereofacial selectivity than the crotylstannane 11. The fact that such a subtle 
change in the structure of the allylstannane led to a dramatic increase in 
diastereofacial selectivity suggested to us that an allylstannane of type I11 might 

I I11 

provide good diastereoselectivity. The chiral center of allylstannane I11 is closer to 
the reacting sp2 carbon than the corresponding stereogenic center in stannane I and 
11, which may enhance the stereoselectivity. Furthermore, the products from the 
reactions of 111 with aldehydes are 2-vinyl- 1,3-diols, valuable intermediates in 
natural product synthesis.3 
this study. 

Now we wish to report our preliminary results from 
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1798 GUNG AND PEAT 
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Scheme I1 

The preparation of allylstannane III is depicted in Scheme I. Starting from 
(S)-lactate, conventional methods were used to prepare the precursor ally1 chloride. 

The displacement of the chloride with the tributyltin anion was accomplished in 
about 50% yield following a recent reprt.4 

The reactions of allylstannane I11 with various aldehydes in the presence of 
Lewis acids were studied in dichloromethane at -78 "C (BFyEt20) and 0 "C 
(MgBr2). The results are summarized in Scheme II.5 

The stereochemistry of the products was determined by conversion of the 
stereoisomers into their acetonides, then the measurements of the relevant 
proton coupling constants.6 An added proof for the product stereorelationship 
comes from the large difference in the chemical shift of the vinyl proton Ha, 
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SYNTHESIS OF 2-VINYL-MONOPROTECTED 1,3-DIOLS 1799 

Table Representative 1H NMR data (CDC13, TMS), 6, J (Hz) 

l a .  5.30, (8.4) 2.24, (8.4, 8.4, 8.4) 3.67, (8.4) 3.74, (overlap) 
l c .  5.23, (9.1) 2.49, (9.1, 9.1, 9.1) 3.76, (9.1) 4.68, (5.3) 
Id .  5.24, (8.9) 2.50, (8.9, 8.9, 8.9) 3.71, (8.9) 4.40, (8.9) 
2a. 5.74, (9.5) 2.11, (9.5, 6.8, 2.3) 3.78, (6.8) 3.95, (overlap) 
2b.  5.69, (10.3) 2.33, (10.3, 3.0, 6.2) 3.74, (3.0) 4.22, (6.2) 
2c .  5.85, (9.5) 2.45, (9.5, 2.4, 4.9) 3.81, (2.4) 4.22, (4.9) 
3a .  5.75, (8.8) 2.21, (8.8, 8.8, 2.6) 3.78, (8.8) 3.89, (2.6) 

Figure 1. (a) lowest energy conformer of the anti-anti isomer (lc) by 
MacroModel, observed: 6 Ha = 5.23 ppm, calculated coupling constants: Ja,b = 
11.5 Hz, Jb,c = 10.7 Hz, Jb,d = 9.8 Hz, observed: Ja,b = 9.1 Hz, Jb,c = 9.1 HZ, 
Jb,d = 5.3 Hz; (b) anti-syn isomer (2c), observed: 6 Ha = 5.85 ppm, calculated 
coupling constants: Ja,b = 11.3 Hz, Jb,c = 2.2 Hz, Jb,d = 2.3 Hz, observed: Ja,b = 
9.5 HZ, Jb,c = 2.4 Hz, Jb,d = 4.9 HZ. 
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1800 GUNG AND PEAT 

Bug% 
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I 

Figure 2. Possible transition state arrangements leading to anti-anti and anti-syn 
isomers. 

Table and Fig. 1. Perhaps due to intramolecular hydrogen bonding, these mono- 
protected 1,3-diols have relatively rigid conformations. This is shown by the 
dramatic difference in the chemical shifts of the vinyl proton Ha between the anti- 
anti and the anti-syn isomers? The two structures in Fig. 1 are the lowest energy 
conformations for each isomer found by the multiconformer submode of the 
MacroModel program (MM2).7 Both structures show intramolecular hydrogen 
bonding. In the anti-anti isomer, the vinyl group is shielded by the phenyl ring and 
thereby exhibits a much higher field shift of the vinyl protons.I0 In the anti-syn 
isomer, the vinyl group is anti to the phenyl group and therefore free from the 
shielding effect. 

Although the chemical yields are modest, several interesting features have 
emerged. The preferential formation of either anti-anti isomers by BF3*Et20 or 
anti-syn products by MgBr2 can be rationalized by the depicted transition states in 
Fig. 2. 
For the reactions catalyzed by BFyEt20, attacks by aldehydes on the allylstannane 
occurs in the re-face with C-H eclipsing C=C bond. Whereas in the reactions 
catalyzed by MgBr2, attacks occur in the si-face with C-0  eclipsing C=C bond. 
This can be explained in terms of the electronic effects in electrophilic additions to 
chirai alkenes. When MgBr2 is used as catalyst, chelation of the benzyloxy group 
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SYNTHESIS OF 2-VINYL-MONOPROTECTED 1,3-DIOLS 1801 

of the allylstannane IIl is possible. Consequently, the BnOMg+ group becomes 
more electron-withdrawing. Thus the "inside alkoxy" arrangement becomes more 
favorable because this conformation is least efficient for electron-withdrawing from 
the already electron-poor transition state.8 When BFyEt20 is used as catalyst, no 
chelation occurs. The C-H eclipsed arrangement is preferred on steric grounds. 
The electrophile attacks from the position anti to the methyl group, which is a better 
electron donor than the benzyloxy group. 

failure to react with benzaldehyde and the generally lower chemical yields. The 
reduced reactivity perhaps is due to a combination of both steric and electronic 
effects. Introduction of a chiral center next to the reacting carbon increases steric 
hindrance. The benzyloxy group is electron-withdrawing, thus reducing the A 

electron density of the double bond. Currently, we are trying to overcome this 
negative effect by varying the protecting group. 

The allylstannane III is less reactive than either I or I1 as evidenced by its 

Acknowledgement: This research is supported in part by a grant from the 
National Institute of Health (l-Rl5-GM44260-0lAl). AJP thanks the R. W. 
Johnson Pharmaceutical Research Institute for a travel award to the National 
American Chemical Society Meeting in Atlanta. 
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