Synthesis of Sterically Hindered α -Aminocarboxamides from α -Bromocarboxamides

Paolo SCRIMIN, Ferruccio D'ANGELI*, Giorgio CAVICCHIONI

Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Ferrara, 1-44100 Ferrara, Italy

As part of an investigation on base-promoted reactions of α -halocarboxamides^{1,2,3}, we studied the nucleophilic substitution at C-2 of 2-haloalkanamides.

The synthesis of α -substituted hindered carboxamides from α -halocarboxamides is encumbered by difficulties, mainly due to competition between α -substitution and α,β -dehydrohalogenation⁴. A recent report on the synthesis of α -t-butylaminocarboxamides⁵ prompts us to report some of our results obtained in the synthesis of sterically hindered α -aminocarboxamides.

2-Bromoalkanamides (1) react with equimolecular amounts of primary or secondary, hindered or unhindered amines (2) either in tetrahydrofuran in the presence of sodium hydride (Method A) or under phase-transfer catalysis (aqueous 50% sodium hydroxide/tetrabutylammonium bromide/dichloromethane; Method B) to afford the corresponding 2-aminoalkanamides (3) in high yields (Table 1).

As was found for *N*-benzyl-2-bromo-2-methylpropanamide (1, $R^1 = CH_3$, $R^2 = -CH_2 - C_6H_5$), the reaction does not proceed in the desired manner with diisopropylamine (2, $R^3 = R^4 = i \cdot C_3H_7$); using Method A, the previously described self-condensation product of the amide is obtained, whereas Method B leads to the formation of *N*-benzyl-2-hydroxy-2-

0039-7881/82/1232-1092 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York

Table 1. 2-Aminoalkanamides (3) prepared

3	R¹	R ²	R ³	R ⁴	Yield [%]		b.p./torr	Molecular formula ^a or m.p. [°C]
					Method A	Method B (time [h])	or m.p. [°C]	reported
a	CH ₃	t-C ₄ H ₉	t-C ₄ H ₉	Н	72		m.p. 69-71°	m.p. 68-70°5
b	CH ₃	$-CH_{2}-C_{6}H_{5}$	1-adamantyl	Н		68 (10)	m.p. 88-90°	$C_{21}H_{30}N_2O$ (326.5)
c	CH ₃	C ₆ H ₅	C ₆ H ₅	Н	67		m.p. 156-158°	m.p. 157-159°5
d	CH ₃	$-CH_2-C_6H_5$	$-CH_2-C_6H_4-Cl-4$	Н	86		b.p. 200°/1.5 ^b	$C_{18}H_{21}CIN_2O$ (316.8)
e	CH ₃	CH ₃	C_2H_5	C_2H_5		73 (6)	b.p. 80°/1.5 ^b	$C_9H_{20}N_2O$ (172.3)
f	CH ₃	$-CH_2-C_6H_5$	C ₂ H ₅	C_2H_5		74 (4)	b.p. 125°/1.5 ^b	$C_{15}H_{24}N_2O$ (248.4)
g	CH ₃	$-CH_2-C_6H_5$	C ₂ H ₅	C_6H_5	88		m.p. 78-79°	$C_{19}H_{24}N_2O$ (296.4)
h	CH ₃	$-CH_2-C_6H_5$	-CH ₂ -CH ₂ -O-CH ₂ -	-CH ₂	86	80 (4)	m.p. 65-66°	$C_{15}H_{22}N_2O_2$ (262.35)
i	C_2H_5	$-CH_2-C_6H_5$	t-C ₄ H ₉	H	66		b.p. 150°/1.5 ^b	$C_{16}H_{26}N_2O$ (262.4)
j	C_2H_5	$-CH_{2}-C_{6}H_{5}$	C_2H_5	C_2H_5		80 (8)	b.p. 179°/1.5 ^b	$C_{16}H_{26}N_2O$ (262.4)

^a The microanalyses showed the following maximum deviations from the calculated values: C, ± 0.35 ; H, ± 0.23 ; N, ± 0.21 . Exception: 3i, C, -0.43.

methylpropanamide together with traces of N-benzylmeth-acrylamide. Non-ionizable N, N-dialkyl-2-bromoalkanamides, e. g.,

are only dehydrobrominated to the corresponding acrylamides under the conditions of Method A.

We assume that the key step in the formation of products 3 is the conversion of the 2-bromoalkanamide 1 into the conjugated anion 4 which then undergoes nucleophilic substitution via an S_N 1-like mechanism. Since stabilized α -lactams (5) are not expected to be formed generally from 2-bromoalkanamides 1^3 under the reaction conditions, zwitterions of the type 6 having a positive charge on C-2 and a stabilizing negative charge on the amide moiety may be regarded as intermediates in the conversion $1 \rightarrow 3^6$.

Some merits of the present synthesis of amides 3 are:

- use of components 1 and 2 in equimolecular amounts;
- mild reaction conditions;
- suppression of elimination reactions;
- no limitations from the physical state of the amine 2;
- salts of low-boiling amines can be used directly under phase-transfer conditions.

The reaction pattern of carboxamides 1 with tertiary amines and other neutral or ionic nucleophiles will be reported elsewhere.

Table 2. Spectral Data of Compounds 3

3	I.R. $v_{C=0}$ [cm ⁻¹]	1 H-N.M.R. (CDCl $_{3}$ /TMS $_{ m int}$) δ [ppm]			
а	(KBr) 1665	7.52 (br s, 1 H, CO—NḤ); 1.34 [s, 15 H, CO—NH—C(CḤ ₃) ₃ and 2 CḤ ₃]; 1.26 [s, 9 H, C—NH—C(CḤ ₃) ₃]; 0.98 (br s, 1 H. NḤ)			
b	(KBr) 1660	7.79 (br t, 1 H, CO—NH); 7.4–7.2 (m, 5 H _{arom}); 4.40 (d, 2 H, J = 5.8 Hz, CO—NH—CH ₂); 2.0–1.4 (m, 10 H _{adamantyl}); 1.4 (s, 6 H, 2 CH ₃); 1.13 (br s, 1 H, NH)			
c	(KBr) 1680	8.95 (br s, 1 H, CO—NH); 7.6-6.6 (m, 10 H _{arom}); 3.86 (br s, 1 H, NH); 1.56 (s, 6 H, 2 CH ₃)			
d	(neat) 1655	7.62 (br t, 1 H, CO—NH); 7.3-7.0 (m, 9 H _{arom}); 4.42 (d, 2 H, <i>J</i> = 5.8 Hz, CO—NH—CH ₂); 3.6 (s, 2 H, C—N—CH ₂); 1.53 (br s, 1 H, NH); 1.42 (s, 6 H, 2 CH ₃)			
e	(neat) 1668	7.22 (br q, 1 H, CO—NH); 2.80 (d, 3 H, J =5.0 Hz. CO—NH—CH ₃); 2.49 (q, 4 H, J =7.0 Hz, 2CH ₂ —CH ₃); 1.21 (s, 6 H, 2CH ₃); 1.03 (t, 6 H, J =7.0 Hz, 2CH ₂ —CH ₃)			
f	(neat) 1670	7.69 (br t, 1 H, CO—NH); 7.5-7.2 (m, 5 H_{arom}); 4.42 (d, 2 H, J = 5.8 Hz, CO—NH—CH ₂); 2.46 (q, 4 H, J = 7.0 Hz, 2 CH ₂ —CH ₃); 1.23 (s, 6 H, 2 CH ₃); 0.94 (t, 6 H, J = 7.0 Hz, 2 CH ₂ —CH ₃)			
g	(KBr) 1665	7.80 (br t, 1 H, CO—NH); 7.5-7.0 (m, $10 H_{arom}$); 4.49 (d, 2 H, $J = 5.8 Hz$, CH_2 —NH—CO); 2.99 (q, 2 H, $J = 7.0 Hz$, CH_2 —CH ₃); 1.23 (s, 6 H, 2CH ₃); 0.78 (t, 3 H, $J = 7.0 Hz$, CH_2 —CH ₃)			
h	(KBr) 1665	7.52 (br t, 1 H, CO—NḤ); 7.3–7.2 (m, 5 H _{arom}); 4.43 (d, 2 H, <i>J</i> = 5.8 Hz, CO—NH—CH ₂); 3.7–3.5, 2.5–2.3 (2 m, 8 H, CH ₂ —CH ₂ —O—CH ₂ —CH ₂); 1.22 (s, 6 H, 2 CH ₃)			
i	(KBr) 1655	7.73 (br, 1 H, CO—NH); 7.3-7.2 (m, 5 H _{arom}); 4.6-4.2 (m, 2 H, CO—NH—CH ₂); 1.8-1.4 (m, 2 H, CH ₂ —CH ₃); 1.75 (br s, 1 H, NH); 1.43 (s, 3 H, CH ₃); 1.10 [s, 9 H, C(CH ₃) ₃]; 0.85 (t, 3 H, J =7.0 Hz, CH ₂ —CH ₃)			
j	(KBr) 1670	7.51 (br t, 1H, CO—NḤ); 7.4-7.2 (m, 5 H_{arom}); 4.7-4.0 (m, 2 H, CO—NH—CḤ ₂); 2.8-2.1 [m, 4 H, N(CḤ ₂ —CH ₃) ₂]; 1.73 (q, 2 H, J =7.0 Hz, C—CḤ ₂ —CH ₃); 1.15 (s, 3 H, CḤ ₃); 0.93 [t, 6 H, J =7.0 Hz, N(CH ₂ —CḤ ₃) ₂]; 0.83 (t, 3 H, J =7.0 Hz, CḤ ₃ —CH ₂ —C)			

I.R. spectra were recorded with a Perkin-Elmer 157 G spectrophotometer. ¹H-N.M.R. spectra were recorded at 90 MHz on a Perkin-Elmer R-32 instrument.

2-Aminoalkanamides (3a-j); General Procedures:

Method A: Sodium hydride (55% dispersion in mineral oil; 10 mmol) is washed with light petroleum (b.p. $40-60\,^{\circ}$ C; 2×3 ml) and covered with anhydrous tetrahydrofuran (15 ml). The suspension is stirred, the amine 2 (5 mmol) is added in one portion, and stirring is continued for a few minutes. Then, a solution of the 2-bromoalkanamide 1 (4 mmol) in anhydrous tetrahydrofuran (5 ml) is added dropwise over 45 min and stirring is continued for a further 30 min. The suspension is centrifugated and the solution is evaporated in vacuo. The residual crude product 3 is column-chromatographed on silica gel using ethyl acetate as eluent, or recrystallized, or distilled in vacuo.

Method B: The 2-bromoalkanamide 1 (3 mmol), the amine 2 or its salt (3.5 mmol), and tetrabutylammonium bromide (97 mg, ~ 0.3 mmol) are added to a well stirred two-phase mixture of aqueous 50% sodium hydroxide (10 ml) and dichloromethane (12 ml). Stirring is continued for 4–10 h (see Table). Water (10 ml) is added to the emulsion, the layers are separated, the organic phase is washed with water (3 × 50 ml) and with 1 normal hydrochloric acid (3 × 30 ml), and the aqueous extracts are combined, neutralized with sodium hydrogen carbonate, and extracted with dichloromethane (3 × 50 ml). This organic extract is dried with sodium sulfate and evaporated to dryness. The residual crude product 3 is column-chromatographed on silica gel using ethyl acetate as eluent, or recrystallized, or distilled in vacuo.

Received: May 24, 1982

© 1982 Georg Thieme Verlag · Stuttgart · New York

^{*} Address for correspondence.

G. Zanotti, F. Filira, A. Del Pra, G. Cavicchioni, A. C. Veronese, F. D'Angeli, J. Chem. Soc. Perkin Trans. 1 1980, 2249.

² G. Cavicchioni, P. Scrimin, A. C. Veronese, F. D'Angeli, J. Chem. Soc. Chem. Commun. 1981, 416.

³ P. Scrimin, F. D'Angeli, A. C. Veronese, Synthesis 1982, 586.

⁴ I. Shahak, S. Rozen, E. D. Bergmann, J. Org. Chem. 36, 501 (1971).

M. Fujihara et al., Yakugaku Zasshi 89, 88 (1969); C. A. 71, 81705 (1969).

^{5 2-}t-Butylamino-2-methylpropanamides are prepared by refluxing 2-halo-2-methylpropanamides with excess t-butylamine in the presence of solid sodium hydroxide: J. T. Lai, Tetrahedron Lett. 23, 595 (1982).

For an alternative synthesis of hindered α -aminocarboxamides, see also: J. T. Lai, J. Org. Chem. 45, 3671 (1980).

⁶ The participation of a zwitterion-like intermediate was proposed for the solvolysis α-bromophenylacetic acids: F. G. Bordwell, A. C. Knipe, J. Org. Chem. 35, 2956 (1970).