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ABSTRACT

The first organocatalytic diastereo- and enantioselective domino Michael/aldol reaction of 3-halogeno-1,2-diones to R,β-unsaturated aldehydes
has been achieved. This transformation tolerates a large variety of electronically different substituents on both reactive partners and allows the
synthesis of challenging cyclopentanone derivatives with four contiguous stereogenic centers in excellent diastereoselectivities (>20:1 dr) as well
as good yields (69�97%), and enantioselectivities (up to 94% ee).

The formation of C�C bonds with a limited number of
steps is one of the most important challenges in organic
synthesis.1 For this purpose, organocatalytic cascade or

domino reactions represent a particularly powerful tool for
accessing versatile chiral building blocks with functional
andmolecular diversity in an atom-economical manner.2,3

1,2-Dicarbonyl compounds are very attractive scaffolds
due to their diverse number of reactive centers.4 They have
two nucleophilic and two electrophilic potentially reactive
sites.5Thanks to their functional complexity, 1,2-dicarbonyl
compounds represent very interesting pronucleophiles for
organocatalytic cascade or domino reactions.6

Recently, this type of compound has been widely uti-
lized in asymmetric organocatalytic transformations.7�9
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The development of different activation modes, increasing
their nucleophilicity instead of competitive useless self-
condensation, has become a very attractive challenge.10

In contrast, 1,2-diones have rarely been described as
pronucleophiles in organocatalytic reactions. Only the re-
activity of the cyclic commercially available 1,2-cyclohex-
adione and 2-hydroxy-1,4-naphthoquinone has been
explored. This fact is probably due to the difficulty in
synthesizing new 1,2-diones. Rueping et al. reported succes-
sively the first domino Michael/acetalization C�O hetero-
cyclization sequence of 2-hydroxy-1,4-naphthoquinone11

and the domino Michael/aldol reaction of 1,2-cyclo-
hexadione12 with R,β-unsaturated aldehydes catalyzed by
the Hayashi�Jørgensen catalyst forming respectively chiral
1,4-pyranonaphthoquinones and bicyclo(3,2,1)octane-6-
carbaldehydes. Furthermore, other Michael acceptors,
such as nitroolefins,13 arylidenemanonitriles,14 and R,β-
unsaturated pyruvates,15 have been also reported as a
replacement for R,β-unsaturated aldehydes catalyzed by a
bifunctional Bronsted acid/base catalyst affording similar
bicyclic structures.
Herein, we describe the first organocatalytic domino

Michael/aldol reaction of acyclic 3-halogeno-1,2-diones
with R,β-unsaturated aldehydes to form cyclopentanones
with four contiguous stereogenic centers. Activation
of position 3 by the halogen atom could increase the
nucleophilicity of these 1,2-dicarbonyls at the expense of
the electrophilic sites. Higher flexibility and molecular
complexity could also be obtained by the use of acyclic
1,2-diones.
We began our investigations by examining the organo-

catalytic reaction of 3-chloro-1,2-dione 1a with cinnamal-
dehyde 2a in toluene catalyzed by the Hayashi�Jørgensen
catalyst I.16 Degradation of the reactive mixture was
observed with a catalyst loading of 20 mol % (Table 1,
entry 1).Butwith 10mol%of the same catalyst I, products
3a and 4a were formed in a ratio of 6:1 (Table 1, entry 2).
Product 4a corresponds to the dehydrated derivative of 3a.
Remarkably, product 3a was obtained exclusively as a
single diastereoisomer, indicating the perfect stereocontrol

of four contiguous stereogenic centers, with a good yield
and enantioselectivity. The other diarylprolinol silylether
catalyst II16 was also tested in this reaction; only prod-
uct 3a was observed with a perfect diastereoselectivity
(>20:1 dr) as well as excellent yield (91%) and enantios-
electivity (91% ee). But when the catalyst loading was
decreased to 10 mol %, the reactivity and stereocontrol of
the reaction were reduced (Table 1, entries 3 and 4). In
the same manner, the use of the Macmillan type catalyst
III16 showed a dramatic drop in the diastereoselectivity
(Table 1, entry 5).
After this first optimization, we decided to examine

the influence of different solvents. The new asymmetric
domino Michael/aldol reaction was carried out in various
solvents without any improvements in terms of reactivity
and selectivity (Table 1, entries 6�11). Experimentation at
low temperature showed the formation of products 3a and
4a in a ratio of 5:1 and the diastereoselectivity was reduced
(Table 1, entry 12). NMR monitored investigations
indicated that the reaction was finished after 30 min, and
product 3awas obtainedwith the same diastereoselectivity
(>20:1 dr), a better yield (97%), and a similar enantio-
selectivity (88% ee) (Table 1, entry 13).

Table 1. Optimization of the Reaction Conditionsa

entrya cat. solvent 3a:4ab

yieldc

(%) drb
eed

(%)

1e I toluene � � � �
2f I toluene 6:1 70 >20:1 87

3 II toluene >20:1 91 >20:1 91

4f II toluene >20:1 83g 9:1 89g

5 III toluene >20:1 86h 5:1 �
6 II MeOH >20:1 53 >20:1 84

7 II CH2Cl2 >20:1 80 >20:1 88

8 II EtOAc >20:1 74 >20:1 90

9 II MeCN 3:1 53 >20:1 80

10 II DMF >20:1 78 >20:1 87

11 II CHCl3 >20:1 77 >20:1 53

12i II toluene 5:1 83h 4:1 �
13j II toluene >20:1 97 >20:1 88

a 1,2-Dione (0.1 mmol), cinnamaldehyde (0.5 mmol), solvent
(0.2 mL). bRatio determined by 1H NMR of the crude reaction mixture
for product 3a. c Isolated yield for product 3a. dDetermined by chiral
SFC for product 3a. eDegradation of the reactivemixture was observed.
f 10 mol % of the catalyst was used. gDetermined for the major
diastereoisomer. hDetermined for the mixture of the two diastereo-
isomers. iReaction was performed at 0 �C. jReaction was performed with
1,2-dione (0.1 mmol), cinnamaldehyde (0.2 mmol) in toluene (0.2 mL) at
room temperature for 30 min.

(8) For the utilization of 1,2-ketoamides as pronucleophiles in organo-
catalytic reactions: Basl�e, O.; Raimondi, W.; Sanchez Duque, M. M.;
Bonne, D.; Constantieux, T.; Rodriguez, J. Org. Lett. 2010, 12, 5246.

(9) For the utilization of 1,2-ketoacids as pronucleophiles in organo-
catalytic reactions: Vincet, J.-M.; Margottin, C.; Berlande, M.;
Cavagnat, D.; Buffeteau, T.; Landais, Y. Chem. Commun. 2007, 4782.

(10) (a) Dambruoso, P.; Massi, A.; Dondoni, A. Org. Lett. 2005, 7,
4657. (b) Basak, A. K.; Shimada, N.; Bow, W. F.; Vicic, D. A.; Tius,
M. A. J. Am. Chem. Soc. 2010, 132, 8266.

(11) Rueping, M.; Sugiono, E.; Merino, E. Angew. Chem., Int. Ed.
2008, 47, 3046.

(12) Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W. Angew. Chem.,
Int. Ed. 2009, 48, 3699.

(13) (a)Rueping,M.;Kuenkel,A.; Fr€ohlich,R.Chem.;Eur. J. 2010,
16, 4173. (b) Ding, D.; Zhao, C.-G.; Guo, Q.; Arman, H. Tetrahedron
2010, 66, 4423.

(14) Ding, D.; Zhao, C.-G. Tetrahedron Lett. 2010, 51, 1322.
(15) (a) Ren, Q.; Gao,Y.;Wang, J.Org. Biomol. Chem. 2011, 9, 5297.

(b) Gao, Y.; Ren, Q.; Ang, S.-M.; Wang, J.Org. Biomol. Chem. 2011, 9,
3691.

(16) Selected general reviews on aminocatalysis: (a) Jensen, K. L.;
Dickmeiss,G.; Jiang,H.;Albrecht, L.; Jørgensen,A.Acc.Chem.Res. 2011,
45, 248. (b) List, B.Chem. Commun. 2006, 819. (c)Melchiorre, P.; Marigo,
M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.



Org. Lett., Vol. XX, No. XX, XXXX C

Under the optimized reaction conditions, the substrate
scope of this diarylprolinol silylether catalyzed enantio-
selective domino Michael/aldol reaction using various
R,β-unsaturated aldehydes 2 was investigated (Table 2).
Aromatic R,β-unsaturated aldehydes 2b�h with electron-
donating (Table 2, entries 1�4) and electron-withdrawing
(Table 2, entries 5�7) substituents were involved success-
fully in the reaction. Various new cyclopentanones with
four contiguous stereogenic centers were synthesized in
goodyields (77�94%) andenantioselectivities (82�90% ee).
The diastereoselectivity was also perfectly controlled in the
same manner (>20:1 dr). Additionally, a heteroaromatic
R,β-unsaturated aldehyde could be also involved in this
transformation (Table 2, entry 8). Finally, less reactive
trans-2-pentenalwasused, andalmost no reactionoccurred.

After the first application of this new methodology, we
decided to apply the same optimized conditions to various
3-chloro-1,2-diones 1b�k with electron-withdrawing and
-donating substituents on the aryl moiety in position 1.
Products were obtained with excellent diastereoselectivities
(>20:1 dr), good yields (80�95%), and enantioselectivities
(88�94% ee) (Table 3, entries 1�4). Other 3-chloro-1,3-
diphenylpropane-1,2-diones with electron-donating and -
withdrawing substituents on the aryl moiety in position 3
were also employed successfully in the new transformation.
A diverse set of new cyclopentanones with four contiguous
stereogenic centers was isolated in good yields (69�95%)
and enantioselectivities (77�91% ee). Only one diastereo-
isomer was still observed (>20:1 dr) (Table 3, entries 5�8).
It is interesting to note that whatever the electronic proper-
tiesof the substituent in the orthoposition, no reactivitywas
observed (Table 3, entries 9 and 10). This lack of reactivity
is probably due to the steric hindrance of the substituents.

The absolue configuration of product 3k was deter-
mined by X-ray crystallographic analysis (Figure 1; see
the Supporting Information). The stereochemistry of these
new cyclopentanones with four contiguous stereogenic
centers was then established.

In order to study othermodes of activation of 1,2-diones,
we decided to test 3-fluoro-1,3-diphenylpropane-1,2-dione
5 in the reaction (Scheme 1).

Table 2. Organocatalytic Domino Michael/Aldol Reactions
of 3-Chloro-1,3-diphenylpropane-1,2-dione (1a) and
R,β-Unsaturated Aldehydes Catalyzed by the Catalyst IIa

entrya R1 3

yieldb

(%) drc
eed

(%)

1 m-MeOC6H4 (2b) 3b 83 >20:1 90

2 p-MeOC6H4 (2c) 3c 77 >20:1 86

3 p-MeC6H4 (2d) 3d 90 >20:1 86

4 o-MeOC6H4 (2e) 3e 83 >20:1 82

5 p-FC6H4 (2f) 3f 94 >20:1 90

6 m-BrC6H4 (2g) 3g 92 >20:1 88

7 o-BrC6H4 (2h) 3h 85 >20:1 83

8 2-furanyl (2i) 3i 81 >20:1 82

aReaction was performed with 1,2-dione (0.2 mmol) and R,β-
unsaturated aldehyde (0.4 mmol) in toluene (0.2 mL). b Isolated yield.
cDetermined by 1H NMR of the crude reaction mixture. dDetermined
by chiral SFC.

Table 3. Organocatalytic Domino Michael/Aldol Reactions of
3-Chloro-1,3-diphenylpropane-1,2-diones and Cinnamaldehyde
(2a) Catalyzed by the Catalyst IIa

entrya R2, R3 1 3

yield

(%)b drc
ee

(%)d

1 R2 = o-Cl-,

R3 = H

1b 3j 80 >20:1 94

2 R2 = p-Br-,

R3 = H

1c 3k 85 >20:1 89

3 R2 = p-MeO-,

R3 = H

1d 3l 95 >20:1 90

4 R2 = m-Me-,

R3 = H

1e 3m 95 >20:1 88

5 R2 = R3 =

p-Cl-

1f 3n 75 >20:1 91

6 R2 = H,

R3 = m-MeO-

1g 3o 95 >20:1 90

7 R2 = H,

R3 = p-Me-

1h 3p 80 >20:1 90

8 R2 = H,

R3 = p-NO2-

1i 3q 69 >20:1 77

9e R2 = H,

R3 = o-Br-

1j 3r � � �

10e R2 = H,

R3 = o-Me-

1k 3s � � �

aReaction was performed with 1,2-dione (0.2 mmol) and R,β-
unsaturated aldehyde (0.4 mmol) in toluene (0.2 mL). b Isolated yield.
cDetermined by 1H NMR of the crude reaction mixture. dDetermined
by chiral SFC. eNo conversion was observed. Starting materials were
recovered.

Figure 1. X-ray structure of product 3k. Thermal ellipsoids are
shown at the 50% probability level.
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Unlike chloroderivatives, 3-fluoro-1,3-diphenylpropane-
1,2-dione 5 did not react with cinnamaldehyde 2a in the
presence of catalyst II. But with catalyst I, a new cyclo-
pentenone with two contiguous stereogenic centers, 6, was

synthesized after 30 min in an excellent diastereoselectivity
(>20:1 dr) as well as good yield (68%) and enantioselec-
tivity (90% ee). The formation of the corresponding
hydrated compound was not observed (Scheme 1).
In the present transformation, we assume that diaryl

prolinol silylether catalyst II forms the reactive imminium
intermediateAwith theR,β-unsaturated aldehyde 2. Then,
a 1,4-addition occurs with the enol form of the acyclic
1,2-diketone 1, forming the Michael adduct B. This
enamine intermediate B achieves the intramolecular aldol
reaction. After hydrolysis, product 3 is obtained and the
catalyst II is regenerated (Scheme 2).
In conclusion, we described a new highly diastereo- and

enantioselective organocatalyzed domino Michael/aldol
reaction in which the formation of four contiguous stereo-
genic centers was controlled. Several acyclic 3-chloro-1,2-
diones and R,β-unsaturated aldehydes could be used pro-
viding an access to challenging chiral cyclopentanones in
excellent diastereoselectivities as well as good yields and
enantioselectivities. In addition, the reactivity of 3-fluoro-
1,2-dione was also evaluated in the transformation. New
chiral cyclopentenone was obtained with the same excellent
diastereoselectivity, in a good yield and enantioselectivity.
The expansion of the scope and synthetic applications of this
reaction constitute our future investigations.
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Scheme 1. Reaction of 3-Fluoro-1,3-diphenylpropane-1,2-
dione (5) and Cinnamaldehyde (2a)

Scheme 2. Proposed Catalytic Cycle for the Organocatalytic
Domino Michael/Aldol Reaction
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