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Abstract—A novel class of 3-(4-methanesulfonylphenyl)-4-phenylpyran-2-ones possessing a central six-membered lactone (pyran-2-
one) ring system, in conjunction with C-6 alkyl (Me, Et or i-Pr), alkoxy (OMe, OEt or O-i-Pr), and alkylthio (SMe, SEt or S-i-Pr)
substituents, were designed for evaluation as selective COX-2 inhibitors.
# 2003 Elsevier Science Ltd. All rights reserved.
Selective cyclooxygenase-2 (COX-2) inhibitors currently
provide effective treatment of inflammatory disease
states such as rheumatoid arthritis and osteoarthritis.1

Recent studies have shown that selective COX-2 inhibi-
tors can also induce apoptosis in colon, stomach, pros-
tate and breast cancer cell lines.2 Selective COX-2
inhibitors offer potential for the prophylactic prevention
of inflammatory neurodegenerative disorders such as
Alzheimer’s disease.3

Diarylheterocycles constitute a major class of selective
COX-2 inhibitors. In this regard, celecoxib (1) possesses
a central five-membered pyrazole ring, whereas eto-
ricoxib (2) has a central six-membered pyridine ring.4

Extensive structural–activity relationship (SAR) studies
for the diarylheterocycle class have shown that a
SO2NH2 or SO2Me and F substituents at the para-
position of one of the aryl rings often provides optimum
COX-2 selectivity and potency.5 Thus, the selective
COX-2 inhibitor SC 57666 (3) has a sulfonylmethyl
group at the para-position of one phenyl ring along with
a fluorine atom at the para-position on the other phenyl
ring.6 The highly selective COX-2 inhibitor rofecoxib (4)
belongs to a diarylheterocylic class that possesses a
central five-membered lactone, [2(5H)furanone], ring
system.7 We describe herein the design, synthesis and
biological evaluation of a novel class of diarylhetero-
cyclic, 6-alkyl, alkoxy or alkylthio-substituted-3-(4-
methanesulfonylphenyl)-4-phenylpyran-2-ones, that
possesses a central six-membered lactone (pyran-2-one)
ring.
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The synthetic reactions used for the synthesis of 6-alkyl,
alkoxy or alkylthio-substituted-3-(4-methanesulfonyl-
phenyl)-4-phenylpyran-2-ones (10a–c, 11a–c, and 12a–c)
are outlined in Schemes 1–3. The 2,3-diphenylcyclopro-
penone (6) with a thiomethyl substituent at the para-
position of one of the phenyl rings was prepared in
moderate yields (22–33%) using a one-pot reaction
starting with tetrachlorocyclopropene (5). The sequen-
tial arylation of 5 with benzene and methylthiobenzene,
followed by hydration with ice-water yielded 2-(4-
methylthiophenyl)-3-phenylcycloprop-2-en-1-one (6) as
the major product along with the 2-(2-methylthiophe-
nyl)-3-phenylcycloprop-2-en-1-one regioisomer as a
minor roduct (ratio 4:1) which could not be purified by
column chromatography. Subsequent oxidation of 6
using aqueous Oxone1 solution afforded the methane
sulfonyl product 7 as shown in Scheme 1.8 The N-alkyl,
alkoxy or alkylthiocarbonylmethyl pyridinium chlorides
or bromides (9a–i, 33–68%) were prepared by the reac-
tion of the respective alkyl, alkoxy or alkylthio-sub-
stituted chloro or bromoacetate derivatives (8a, 8b, or
8c) with pyridine as illustrated in Scheme 2.

The target 6-alkyl, alkoxy or alkylthio-substituted-3-(4-
methanesulfonylphenyl)-4-phenylpyran-2-ones (10a–c,
11a–c, and 12a–c) were prepared in low to moderate
yields (9–44%) by the condensation of 7 with the
respective pyridinium chlorides or bromides (9a–c, 9d–f,
or 9g–i) in the presence of the base Et3N to produce an
intermediate ylide product that undergoes a ring
expansion reaction to afford the title products (10a–c,
11a–c, or 12a–c) as illustrated in Scheme 3.9 The struc-
tures of 10–12 were confirmed by microanalyses data
and 1H NMR NOE studies which showed NOE inter-
actions between H-5 and the 6-alkyl (R), alkoxy (O-R)
or alkylthio (S-R) moiety, and between H-5 and the C-4
ortho-phenyl hydrogens, which establishes the regio-
chemistry of the C-4 and C-5 phenyl rings.

The effect of the C-6 alkyl (10a–c), alkoxy (11a–c), and
alkylthio (12a–c) substituents on the central six-mem-
bered lactone (pyran-2-one) ring on COX-2 selectivity
and potency was determined by in vitro COX-1/COX-2
inhibition studies. The structure–activity relationships
acquired showed that this lactone class of compounds
are moderate to potent selective COX-2 inhibitors (see
data in Table 1).

The 6-alkyl-3-(4-methanesulfonylphenyl)-4-phenyl
pyran-2-ones (10a–c), show weak to moderate COX-1
inhibition (8.0–614.8mM range) with good COX-2 inhib-
ition in the 0.5–1.5 mM range. In the alkoxy series (11a–
c), good COX-2 inhibitory activity and selectivity was
shown by the 6-ethoxy derivative 11b (COX-1
IC50=281.5 mM; COX-2 IC50=1.3 mM; COX-2 Selec-
tivity Index=216.5). Introduction of a thioethyl (EtS-)
substituent at C-6 of the central pyran-2-one ring led to
a dramatic increase in COX-2 selectivity and potency,
with 12b showing a weak COX-1 inhibition (COX-1
IC50=386.2 mM) and potent inhibition of COX-2
(COX-2 IC50=0.0032 mM) for a very high COX-2 S.I.
>120,000 relative to the reference drug rofecoxib
(COX-2 IC50=0.4279; S.I. >1168).

The critical difference between the binding sites for
COX-1 and COX-2 is at position 523 where COX-2 has
the amino acid residue Val in place of the bulkier Ile in
COX-1. This difference produces a secondary pocket
extending off the primary binding site in COX-2 that is
absent in COX-1. Consequently, the combined volume
of the primary binding site and the secondary pocket in
COX-2 is about 25% larger (394 Å3) than the volume of
Scheme 3. Reagents and conditions: (a) benzene, triethylamine, 25 �C,
16–18 h.
Scheme 1. Reagents and conditions: (a) dry AlCl3, 1,2-dichloroethane, benzene, 25
�C, 24 h; (b) thioanisole, 25 �C, 24 h; (c) H2O, 25 �C, 10min; (d)

aqueous Oxone1, THF–MeOH (1:1), 25 �C, 4–5h.
Scheme 2. Reagents and conditions: (a) pyridine, THF, 25 �C, 6 h.
2206 P. N. P. Rao et al. / Bioorg. Med. Chem. Lett. 13 (2003) 2205–S2209



the COX-1 binding site (316 Å3).10 This difference in
volume can be exploited to manipulate COX-2 selectiv-
ity of diarylheterocyclic classes of COX-2 inhibitors, by
varying the volume of the drug and the appropriate
placement of substituents with varying electronic and
steric properties.11

It is well established for the diarylheterocyclic class of
COX-2 inhibitors, that a para-methylsulfone or sulfo-
namide substituent on one of the phenyl rings is a
requirement for good COX-2 potency and selectivity.5

Accordingly, the 6-alkyl, 6-alkoxy, and 6-alkylthio-3-(4-
methanesulfonylphenyl)-4-phenylpyran-2-one group of
compounds were designed to have a –SO2Me sub-
stituent at the para-position of one of the phenyl rings.
Compounds 10a–c, 11a–c, and 12a–c have volumes in
the range of 293–345 Å3, relative to the selective COX-2
inhibitor rofecoxib (267.2 Å3) as shown in Table 1. In
general, for this series of compounds, COX-2 selectivity
and potency was dependant upon steric and electronic
properties of the C-6 substituent on the central pyran-2-
one ring which positions the sulfonylmethyl moiety in
the vicinity of the secondary pocket of COX-2.

The orientation of the highly potent and selective COX-
2 inhibitor, 6-ethylthio-3-(4-methanesulfonylphenyl)-4-
phenylpyran-2-one (12b), in the COX-2 active site was
examined by a docking experiment (Fig. 1).12 This study
showed that 12b binds in the center of the primary
binding site of COX-2 with the SO2Me moiety interact-
ing with the secondary pocket amino acid residues
Phe518, Gln192, Arg513, Leu352, Ser353 and Val523. One of
Table 1. In vitro inhibition of COX-1 and COX-2 by 6-alkyl, 6-

alkoxy or 6-alkylthio-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-

ones (10a–c, 11a–c, and 12a–c)
Compd
 COX-1
inhibition
COX-2
inhibition
COX-2
 Volume
(Å3)c
IC50, mMa
 IC50, mMa
 S.I.b
10a
 614.8
 0.68
 904.0
 293.56

10b
 8.0
 1.5
 5.3
 310.18

10c
 341.5
 0.50
 683.0
 326.69

11a
 14.7
 28.3
 <0.52
 301.69

11b
 281.5
 1.3
 216.5
 318.75

11c
 4.0
 2.0
 2.0
 336.04

12a
 >100
 2.8
 35.7
 311.54

12b
 386.2
 0.0032
 120,687.5
 328.56

12c
 >100
 >100
 345.65

Rofecoxib
 >500
 0.4279
 >1,168
 267.20

Celecoxib
 22.9
 0.0567
 404
 298.56
aValues are means of two determinations acquired using an ovine
COX-1/COX-2 assay kit (Catalog No. 560101, Cayman Chemicals
Inc., Ann Arbor, MI) and the deviation from the mean is <10% of
the mean value.
bIn vitro COX-2 selectivity index (IC50 COX-1/IC50 COX-2).
cThe volume of the molecule, after minimization using the MM3 for-
cefield, was calculated using the Alchemy 2000 program.
Figure 1. Docking of 12b (ball and stick) in the active site of murine COX-2 (line and stick) (Eintermolecular=�90.81 kcal/mol). Hydrogen atoms of
the amino acid residues are removed to increase clarity.
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the O-atoms of the SO2Me substituent forms a hydro-
gen bond with the amide hydrogen of Phe518 (1.92 Å).
The ring O-atom of the central lactone (pyran-2-one) is
oriented in the direction of the polar amino acid Arg120

at the mouth of the channel, where this O-atom is about
4.24 Å away from the NH2 (guanidino) group. The
C¼O of the central pyran-2-one is hydrogen bonding
with the OH of Tyr355 (1.70 Å). These interactions may
disrupt the salt bridge between His90, Arg120, Tyr355 and
Glu524 at the mouth of the COX-2 active site. The
unsubstituted phenyl ring lies in a hydrophobic cavity
lined by Tyr385, Trp387, Tyr348 and Ser530. Interestingly,
the C-6 EtS-substituent is located in a hydrophobic
region formed by Val344, Ile345, Val349, Ser530 and
Leu531, with the S-atom forming a weak hydrogen bond
with the OH of Ser530 (4.41 Å). This shows the impor-
tance of the C-6 substituent in orienting the molecule
such that the methylsulfone moiety inserts into the sec-
ondary pocket of COX-2. A similar docking study for
the less potent, and less selective, COX-2 inhibitory C-6
OEt analogue (11b) showed that the SO2Me moiety is
inserted less deeply into the secondary pocket than the
C-6 SEt of 12b, the lactone ring oxygen atom in 11b is
closer to the NH2 of Arg120 (3.26 Å) relative to 4.24 Å in
12b, that the C-6 OEt oxygen atom is not within
hydrogen bonding distance of the OH of Ser530 (6.63 Å),
and the intermolecular energy for the ligand-enzyme
complex for 11b is higher (�87.60 kcal/mol). These
observations together with the larger volume (328.5 Å3),
provides a good explanation for the potent and selective
inhibitory activity of 12b.

The results of this investigation show (i) a C-6 SEt sub-
stituent (12b)13 in this 3-(4-methanesulfonylphenyl)-4-
phenylpyran-2-one class of diarylheterocycles provides
potent and selective inhibition of the COX-2 isozyme,
(ii) molecular modeling studies indicate the SO2Me
moiety inserts deep into the COX-2 secondary pocket
and the C-6 SEt sulfur atom forms a weak hydrogen
bond with the OH atom of Ser530 and (iii) these C-6
alkyl, alkoxy and alkylthio compounds 10–12 could
serve as useful probes to study the function and cataly-
tic activity of the COX-2 isozyme.
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