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Abstract: A novel synthetic approach towards the preparation of
3-substituted-7,8-dimethoxy-3,3a,4,5-tetrahydroquinolino[4,3-
c]isoxazole derivatives is reported. Further application of this meth-
odology to the preparation of previously unattainable 3a,4-dihy-
droazabenzopyrano[4,3-c]isoxazole derivatives is also described.
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The potential antidepressant activity of 3-piperazinyl-
methyl-3a,4-dihydro-3H-[1]benzopyrano[4,3-c]isoxazole
derivatives represented by compound 1 (Figure 1) was re-
cently described by our group.1–3 This class of compounds
presents an interesting combination of activities acting as
dual a2-adrenoceptor antagonists and 5-HT reuptake
inhibitors. Several research programs around these
structures have been initiated at Johnson & Johnson
Pharmaceutical Research and Development to fully
explore the SAR of this family of compounds. From this
exploration, 3-substituted-7,8-dimethoxy-3,3a,4,5-tetra-
hydroquinolino[4,3-c]isoxazole derivatives emerged as
potential additional promising leads for further pharma-
cological evaluation (Figure 1, compound 2).3

Figure 1 Lead tricyclic isoxazoline derivatives with potential anti-
depressant activity.

The preparation of these analogues was firstly achieved
following the original procedure described by Baraldi et
al. (Scheme 1).4 This procedure involves the generation of
the tricyclic system by intramolecular 1,3-dipolar cy-
cloaddition, via nitrile oxides, of the appropriate inter-
mediates (Scheme 1, path A). Unfortunately, when this
approach was applied to the preparation of 7,8-
dimethoxy-3,3a,4,5-tetrahydroquinolino[4,3-c]isoxazole

derivatives, the desired compounds were only obtained in
very low yields (<5%), making further exploration around
this core difficult.3 Furthermore, the application of this ap-
proach to the synthesis of some analogues of prototype 1
presenting a pyridine moiety replacing the phenyl ring
proved to be unsuccessful.

In order to circumvent those issues, novel approaches to-
wards the preparation of these analogues were envisaged.
After prospecting several alternatives, the construction of
the tricyclic core by intramolecular cyclization of the
appropriate isoxazoline intermediates (Scheme 1, path B)
emerged as the best option. Herein we report an improved
method for the synthesis of 7,8-dimethoxy-3,3a,4,5-tet-
rahydroquinolino[4,3-c]isoxazole derivatives and also the
application of this novel strategy to the synthesis of 3a,4-
dihydroazabenzopyrano[4,3-c]isoxazole derivatives pre-
viously unattainable via the former procedure.

Scheme 1 Retrosynthetic analyses towards the synthesis of tricyclic
isoxazoline cores.

Thus, commercially available 6-nitroveratraldehyde 3
was chosen as starting material for the application of this
new procedure (Scheme 2). Conversion of 3 into the cor-
responding oxime, using standard procedures, followed
by oxidation to the corresponding nitrile oxide and in situ
1,3-dipolar cycloaddition with dimethyl fumarate afford-
ed the isoxazoline intermediate 4. The relative trans dis-
position of substituents at positions 3 and 4 of the
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isoxazoline ring was predetermined by the trans stereo-
chemistry of the alkene fragment and was unequivocally
assigned by NMR analysis. Simultaneous reduction of
both ester groups with sodium borohydride in a mixture of
tetrahydrofuran–methanol5 followed by reaction of the
dihydroxy derivative obtained with methanesulfonyl
chloride furnished compound 5. Further reduction of the
nitro group and subsequent cyclization by intramolecular
N-alkylation reaction of the amino group with the
adjacent methanesulfonyl group afforded compound 6.6

This intermediate additionally bears a second methane-
sulfonyl group ready for further derivatization. For in-
stance, preparation of compound 2 could be easily
performed by simple reaction of intermediate 6 with
trans-1-(2-methyl-3-phenylpropenyl)piperazine with an
overall yield of 26%, what clearly improved the result ob-
tained with the previous procedure (2%).3 Moreover, the
excellent overall yield obtained in the synthesis of scaf-
fold 6 offered clear advantages for further exploration
around this heterocyclic system.

Application of this strategy to the synthesis of 3a,4-dihy-
dro-7-aza-3H-[1]benzopyrano[4,3-c]isoxazole derivative
11 is shown in Scheme 3. Thus, MEM-protected 3-hy-
droxypyridine 77 was first lithiated at position 4 and then
the anion was reacted with methyl formate furnishing 4-
carboxaldehyde pyridine derivative 8. Then, the sequence
of oxime formation, oxidation and 1,3-dipolar cycloaddi-
tion reactions yielded diester 9. The relative stereochem-
istry of both stereocenters was again predetermined by the
trans configuration of the alkene and remained unaltered
during the rest of the synthesis procedure. Subsequent re-
duction of both ester groups followed by MEM-deprotec-
tion in acidic media afforded trihydroxy derivative 10.
Finally, the 3a,4-dihydro-7-aza-3H-[1]benzopyrano[4,3-
c]isoxazole core 11 could be prepared via intramolecular
Mitsunobu reaction between the aromatic OH group and
the closest hydroxyalkyl moiety.8 This novel tricyclic
system9 presented a primary hydroxy group suitable for
further derivatization.

For the synthesis of the 3-substituted 3a,4-dihydro-6-aza-
3H-[1]benzopyrano[4,3-c]isoxazole derivative 14, nu-
cleophilic aromatic substitution reaction was chosen as fi-
nal cyclization step. O-Alkylation or Mitsunobu reactions
were tried unsuccessfully as 2-hydroxypyridines mainly
exist in the pyridone form.10 Thus, 5-[2-bromopyridyl-3-
yl]isoxazoline derivative 13 was prepared from commer-
cially available 2-bromopyridine-3-carboxaldehyde 12
following the same sequence of reactions already de-
scribed (Scheme 4). In this case the oxidizing system
NCS/pyridine was found to be optimal for the 1,3-dipolar
cycloaddition reaction. Then, reduction of both esters of
13 to the corresponding hydroxy groups followed by in-
tramolecular nucleophilic aromatic substitution reaction
promoted by basic media afforded desired scaffold 1411 in
low yield but easily isolated after purification by standard
flash chromatography. In this case, again the stereo-
chemistry of both stereocenters was not affected by the
cyclization step.

Scheme 4 Reagents and conditions: (a) NH2OH·HCl, NaOAc,
EtOH, r.t., 16 h; (b) dimethyl fumarate, NCS, pyridine, Et3N, CHCl3,
reflux, 2 h; (c) NaBH4, THF–H2O, 0 °C, 1.5 h; (d) K2CO3, methyl iso-
butyl ketone, reflux, 16 h.
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Scheme 2 Reagents and conditions: (a) NH2OH·HCl, NaOAc, EtOH, r.t., 1 h; (b) dimethyl fumarate, NaClO, Et3N, CH2Cl2, r.t., 2 h;
(c) NaBH4, MeOH–THF, 0 °C, 2 h; (d) MeSO2Cl, Et3N, CH2Cl2, 0 °C, 30 min; (e) H2, Pd/C, THF–H2O, r.t., 24 h; (f) Et3N, THF, reflux, 24 h.
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Scheme 3 Reagents and conditions: (a) BuLi, TMEDA, methyl formate, Et2O, 0 °C to r.t., 16 h; (b) NH2OH·HCl, NaOAc, EtOH, r.t., 16 h;
(c) dimethyl fumarate, NaClO, Et3N, CH2Cl2, r.t., 16 h; (d) LiAlH4, THF, 0 °C, 2 h; (e) TFA, CH2Cl2, r.t., 16 h; (f) polymer-supported PPh3,
Et3N, DEAD, THF, reflux, 16 h.
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In conclusion, the synthesis of 3-substituted 7,8-
dimethoxy-3,3a,4,5-tetrahydroquinolino[4,3-c]isoxazole
derivatives has been clearly improved applying a new
synthetic approach. This strategy has been successfully
applied to the preparation of previously unattainable 3-
substituted 3a,4-dihydroazabenzopyrano[4,3-c]isoxazole
analogues as well. Additionally, three different approach-
es for the final cyclization step, intramolecular N-alkyla-
tion, Mitsunobu and aromatic nucleophilic substitution
reactions, have been used, what clearly highlight the
versatility of this new procedure. Further applications of
these intermediates to the preparation of biologically
active compounds will be matter of future publications.
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