
LETTER 2667

Synthesis of the C15–C35 Segment of Chivosazole A
Synthesis of the C15–C35 Segment of Chivosazole ADominic Janssen, Markus Kalesse*
Institut für Organische Chemie, Leibniz-Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
Fax +49(511)7623011; E-mail: Markus.Kalesse@oci.uni-hannover.de
Received 21 August 2007

SYNLETT 2007, No. 17, pp 2667–267016.10.2007
Advanced online publication: 25.09.2007
DOI: 10.1055/s-2007-991049; Art ID: G27407ST
© Georg Thieme Verlag Stuttgart · New York

Abstract: The synthesis of the C15–C35 segment of chivosazole A
is reported using a convergent approach that incorporates an E-se-
lective Wittig olefination for joining both subunits of this fragment.
Key words: chivosazole, natural product, antibiotic, myxobacteria

Chivosazole A (Table 1) belongs to a family of 31-mem-
bered macrolide glycosides isolated at the Helmholtz
Centre for Infection Research (HZI, formerly GBF) in
1997 from S. cellulosum So ce12.1 They are active against
yeasts and filamentous fungi and they are highly cytotoxic
against mammalian cell cultures (IC50 9 ng/mL L 929 and
HeLa). Except for chivosazole F (7), all natural variants
possess a 6-desoxyglucopyranose (chinovose) at C11.

The stereochemistry of chivosazole A (1) was solved by
chemical degradation, NMR studies, and analysis of the
polyketide reductase gene cluster.2 Finally, an additional
confirmation of the configurational assignment of the
segment obtained from ozonolysis was obtained by re-

synthesizing this segment. In order to independently
confirm the proposed stereochemistry of the remaining
structural motifs and to access derivatives for structure–
activity investigations we initiated a program that aims at
the synthesis of chivosazole A (1).

Scheme 1  Retrosynthetic disconnection of chivosazole

We envisioned constructing chivosazole A (1) from the
two equally complex fragments 8 and 9 via olefination at
carbons C14 and C15 followed by macrolactone forma-
tion (Scheme 1). In synthetic direction the northern hemi-
sphere 8 can be constructed from aldehyde 10 and Wittig
reagent 11. This segment contains already eight out of the
ten stereocenters of the aglycon of chivosazole A (1). The
synthesis of 11 commenced with the construction of the
C28–C35 segment 12 which was synthesized according to
our strategy used for the structural elucidation. An anti-
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Felkin selective Mukaiyama aldol reaction and an anti-
selective reduction of the so-obtained hydroxyl ketone
were used as the pivotal transformations for this segment.2
Reductive opening of the PMP acetal and subsequent
Swern oxidation provided compound 13. In the sub-
sequent olefination the Ando protocol3 installing the Z-
configured double bond provided higher yields and selec-
tivities compared to the Still–Gennari4 reaction (Z/E =
20:1, 58%). The so-obtained ester 15 was reduced and
transformed to the corresponding bromide,5 which was
subsequently reacted with PBu3 to generate Wittig salt 166

(Scheme 2).

Scheme 2 Synthesis of segment 16

The synthesis of the C15–C25 segment 10 began with
PMB protection and oxidation of diol 17. For the required
enantioselective aldol reaction the Nagao protocol7 pro-
vided high yields and selectivity (90% ee, 97%). After
TBS protection and transformation of the amide to the
corresponding aldehyde the anti-aldol reaction according
to Masamune8 gave superior results compared to the
Evans or Paterson anti-aldol reactions and provided aldol
product 23 with three configurations established. Methy-
lation of the so-generated secondary alcohol was achieved
by treatment with MeI and Ag2O9 and for cleaving the
chiral auxiliary reduction with LiAlH4 was mandatory.
Re-oxidation to acid 25 was accomplished via a two-step
Swern10 and Pinnick11 oxidation sequence. Finally, the
oxazole moiety was introduced under standard condi-
tions.12 In order to liberate the aldehyde carbonyl group
necessary for coupling, the PMB group was removed us-
ing DDQ and the alcohol oxidized with MnO2 to provide
segment 27 (Scheme 3).
Even though the Nagao and Masamune protocols are
known as reliable and widely applicable methods in aldol
chemistry we independently confirmed the relative con-
figuration of compound 25 through analyzing the H–H
coupling constants of lactone 28, obtained by treatment of
25 with HF in pyridine (Scheme 4).13

The observed NOE contacts and the coupling constants
clearly support the configurations expected from these
aldol reactions. The boat conformation on which the
configurational analysis was performed was deduced
from coupling constants and computational analysis of the
lactone.
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The final coupling of both segments could then be
obtained in toluene at 0 °C with KOt-Bu as the base with
gratifying yields and the E-configured double bond as the
only detectable isomer (Scheme 5).14 Even though the 1H
NMR spectrum of the C24–C28 segment was of higher
order and confirmation of the E-configuration was there-
fore not accessible through analysis of the coupling
constants, a Win-Dyna simulation clearly confirmed the
expected E-configured double bond.
With a reliable and efficient route for the northern hemi-
sphere in hand we now aim for the construction of the
aglycon of chivosazole A (1).

Scheme 5 Coupling of segments 27 and 16 via Wittig reaction
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aqueous layer was extracted with MTBE  (2 × 5 mL). The 
combined organic layers were dried over MgSO4. The 
solvent was removed under reduced pressure and the residue 
was purified via flash chromatography. The reaction yielded 
11 mg of compound 29 (15 mmol, 57%). Rf = 0.32 (EtOAc–
hexane, 1:10); [a]D

23 +3.9 (c 1.02, CHCl3). 1H NMR (400 
MHz, CDCl3): d = 8.17 (s, 1 H), 7.29 (d, J = 8.5 Hz, 2 H), 
6.85 (d, J = 8.9 Hz, 2 H), 6.42–6.36 (m, 1 H), 6.18–6.09 (m, 
2 H), 6.04 (t, J = 11.1 Hz, 1 H), 5.62 (t, J = 10.4 Hz, 1 H), 
5.59 (dd, J = 14.0, 8.2 Hz, 1 H), 5.32–5.54 (m, 2 H), 4.51 (s, 
2 H), 4.32–4.27 (m, 1 H), 3.97–3.92 (m, 1 H), 3.91 (s, 3 H), 
3.84–3.81 (m, 1 H), 3.79 (s, 3 H), 3.78–3.76 (m, 1 H), 3.42 

(dq, J = 6.8, 5.0 Hz, 1 H), 3.37 (s, 3 H), 3.12 (dd, J = 6.5, 3.8 
Hz, 1 H), 2.93–2.84 (m, 1 H), 1.86–1.79 (m, 1 H), 1.43–1.37 
(m, 4 H), 1.34 (d, J = 6.8 Hz, 3 H), 1.16 (d, J = 5.8 Hz), 1.06 
(d, J = 6.8 Hz, 3 H), 0.95 (d, J = 6.8 Hz, 3 H), 0.92 (s, 9 H), 
0.86 (s, 9 H), 0.85 (s, 9 H), 0.10 (s, 6 H), 0.04 (s, 3 H), –0.01 
(s, 3 H), –0.02 (s, 6 H). 13C NMR (100 MHz, CDCl3): d = 
166.9, 162.0, 159.1, 144.1, 137.2, 134.6, 133.2, 132.6, 
131.3, 130.0, 129.5, 128.9, 128.4, 113.8, 84.7, 79.1, 74.6, 
71.7, 70.3, 66.7, 57.6, 55.4, 52.3, 43.1, 40.3, 36.2, 32.1, 29.9, 
26.2, 26.1, 26.0, 25.6, 22.9, 18.8, 18.2, 14.3, 11.5, 9.2, 7.5, 
1.2, –3.3, –3.5, –3.8, –4.1, –4.3, –4.8. ESI-HRMS: m/z calcd 
for C52H91NO9Si3Na: 980.5899 [M + Na+]; found: 980.5900.
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