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Abstract: In aziridinations of p-substituted styrenes (4), (5) and (6) with the enantiopure 3-acetoxy- 
aminoquinazolinone (l), diastereoselectivily (dr) increases from 5: 1 (for (9) to 10: 1 (for (10) to -20: 1 
(for (11)): changes in transition state geometry which account for this increase are rationaiised using 
Frontier orbital Theory. 0 1998 Elsevier Science Ltd. All rights reserved. 

3-Acetoxyaminoquinazolinones e.g. Q*NHOAc (1) are aziridinating agents for alkenes.1 The 
mechanism for 3-membered ring formation resembles that by which peroxyacetic acid converts 
alkenes into epoxides* (the Bartlett mechanism); both reactions are stereospecific with retention of 
the alkene configuration in the product and both react highly stereoselectively with cyclohex-2-enol 
syn to the hydroxy group.3 Howeve;, the presence of the quinazolinone ring in the aziridinating 
agent offers a number of advantages: m particular, the presence of a chiral centre at its 2-position as 
in Q*NHOAc (1) can result in high (reagent-controlled) diastereoselectivity in aziridination of 
prochiral alkenes as in Scheme 1.4 

Ph 

(0 3 Q*NHOAc 

Scheme 1 

(2) R = SiMe3 ----) (7)R=SiMe3 (drll:l) 
(3)R=H ---t (8)R=H (dr 5:I) 
(4)R=CH3 e (9)R=CH, (dr 5:I) 
(5) R = CH,Cl -----) (10) R = CH,Cl (dr 1O:l) 
(6) R = CHClz e (11) R = CHClz (dr 2O:l) 

In the formation of aziridine (7) in Scheme 1, the high diastereoselectivity was ascribed to a 
preferred conformation for the trialkylsilyloxyethyl 2-substituent of Q* in the transition state model 
previously5 deduced for these aziridinations (see below). The mechanism of aziridination of electron- 
rich alkenes such as styrene is believed to be concerted but asynchronous as in (12);6 here CD-N 
bond formation runs ahead of N-C, bond formation and attack by the n-electrons in the alkene on 
the sp3-hybridised nitrogen7 in Q*iVHOAc (1) occurs with SN2-type displacement of the acetoxy 
group. In terms of orbital overlap therefore, the aziridination is dominated by interaction of the 
HOMO (alkene) with o*(N-OAc) over LUMO (alkene) with HOMO (NOAc) (the lone pair- 
containing orbital on nitrogen). The present work was undertaken in an attempt to understand why 
substitution of a fl-trimethylsilyl substituent into styrene [(3) + (2)] raised the level of diastereo- 
selectivity in aziridination by Q*NHOAc (1) from 5: 1 to 11: 1 (Scheme 1; major diastereoisomers (8) 
and (7), respectively). As Scheme 1 shows, as the P-substituent becomes progressively more 
electron-withdrawing in the styrenes (4), (5) and (6), the diastereoselectivity (dr) in their aziridina- 
tion by Q*NHOAc (1) increases from 5: 1 to 10: 1 to -20: 1 respectively. 
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Analysis by NMR spectroscopy of the crude reaction product from aziridination of P-methyl- 
styrene (4) was complicated by the presence of both diastereoisomers of the aziridine product as 
mixtures of N-invertomers (1.3: 1 for major (9); 2.1: 1 for minor). However, separation by chromato- 
graphy of a pure sample of the major diastereoisomer (9) facilitated this analysis. In the aziridination 
of cinnamyl chloride (5), separation by chromatography of the major and minor aziridine diastereo- 
isomers and isolation of (10) as a crysta.lline solid (N-invertomer ratio 3.5:1) again facilitated 
measurement of the diastereoisomer ratio present in the crude reaction product by NMR 
spectroscopy. 

In aziridination of cimxunyl dichloride (6) distinction between the N-invertomer ratio (7: 1) and 
the diastereoisomer ratio (-20: 1) was again possible after assignment of signals present in the NMR 
spectrum of the pure crystallme major diastereoisomer (11). The preferred sense of diastereo- 
selectivity in aziridination of substituted styrenes (2)-(6) is the same and (7)-(11) are the respective 
major diastereoisomers. This conclusion for p-trimethylsilyl styrene (7) follows from a chemical 
correlation reported previously.4 X-ray crystal structures* for aziridines (10) and (11) (Figs. 1 and 2) 
confirm their relative and hence absolute contigurations. These crystal structures show a cis- 
relationship between quinazolinone and 
invertomer in solution (CDCI,). 

phenyl rkgs which corresponds to that of the major N- 

Fig. 1. X-ray crystal structure of 10. The 
minor component of disorder is depicted by 
dashed bonds. lJkplacement ellipsoids are 
shown at 30% probability level.] 

Fig. 2. X-ray crystal stmcture of 11 with 
displacement ellipsoids shown at 30% 
probability level. 

For aziridines (8) and (9) assignments of configuration were carried out as shown in Scheme 2. 
Thus treatment of the aziridines (both 5:l mixtures of diastereoisomers) with tributylammonium 
fluoride (TBAP) in THF gave the corresponding alcohols (14) and (15) as major products, 
respectively. These alcohol diastereoisomers are the major ones (dr 6:l in both cases) from 
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aziridination of styrene (3) and P-methylstyrene (4) respectively with QNHOAc (13) in the presence 
of Ti(OBut),. ilziridines (14) and (15) are those predicted as the major diastereoisomers from our 
transition state model for these Ti(OBur)4-mediated reactions using QNHOAc (13).svta 

The effect of increasing the electron-withdrawing character of the /3-substituent down the series 
(4) (5) and (6) is to lower both HOMO and LUMO levels of the alkene and lead to an increase in 
LUMO (alkene) - HOMO (Q*NHOAc) overlap relative to that of HOMO (alkene) - LUMO 
(Q*NHOAc). Additionally, there is a progressive increase in the coefficient at C, in the LUMOs of 
(4) (5) and (6) respectively” which will also favour LUMO(alkene) - HOMO (Q*NHOAc). Both 
these factors will tend to reduce the extent to which Cp-N bond formation runs ahead of N-C, bond 
formation cJ: (12) and hence lead to a tighter more symmetrical transition state. 

R’ 

(13) d =Me 

This change in transition state geometry is expected to increase the diastereoselectivity in 

PllFR 
Ti(OB& - 

Scheme 2 

(14) R = H _TBAF/THF (8) 
TBAF/THF 

(15) R = Me f-- (9) 

formation of e.g. aziridine (11) because it brings the proton HP on the alkene closer to the existing 
chiral centre in the 2-substituent on the quinazolinone ring. More specifically, using our previous 
derived transition state model for aziridination using Q*NHOAc (l), this change brings about greater 
steric interaction between H and the CHMeOSi as shown in (16). Aziridination is accordingly 
preferred via transition state Q 17) with its lesser interaction between HP and CHMeOSi. 

Our calculations on the effects of /3-trihydrosilyl substitution (as a model for fi-trimethylsilyl) on 
the LUMO energy of styrene and on the change in the coefficient at the a-position suggest that a 
similar explanation accounts for the increased diastereoselectivity in formation of aziridine (7) by 
comparison with (8) (Scheme 1). 

ä (11) 
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