corresponded to the $[M + 11H]^{11+}$ and $[M + 10H]^{10+}$ protonation states of the native (i.e., homodimeric) enzyme-inhibitor complex. The data are shown in Figures 1 and 2. The ternary complex had a mass of 22345 Da, as expected for 2 HIV PR subunits and JG365 ($C_{1021}H_{1672}N_{270}O_{281}S_4$ calculated monoisotopic mass 22340.4, average mass 22354.4). By raising the declustering voltage at the ion sampling orifice, it was possible to dissociate the complex either partially (Figure 2b), thus observing both the ternary complex and monomeric HIV PR, or entirely, so that only the enzyme monomer was observed (Figure 2c).

Observation of the ternary complex is direct proof of 1:1 stoichiometry between the dimeric enzyme and inhibitor and is consistent with crystallographic¹² and kinetic¹⁷ data. Interestingly, the unique internal water molecule observed in the crystal structure of this¹² and other HIV PR-inhibitor complexes^{11,13,19,20} was not observed. This is surprising given that this water molecule is internal to the folded structure and appears to be tightly coordinated, with two hydrogen bonds to the amide backbone of the enzyme and two to the inhibitor.

The demonstration that noncovalent macromolecular complexes can be directly observed will extend the applications of mass spectrometry to the study of protein-protein, protein-DNA, receptor-ligand, enzyme-substrate, and enzyme-inhibitor macromolecular complexes. Dissociation of such complexes by raising the declustering voltage at the ion sampling orifice will make possible the facile distinction between covalent and noncovalent complexes.

Acknowledgment. We thank Martina Schnölzer for a sample of crude [Aba^{67,95}]HIV protease and Paul Alewood of the University of Queensland, Australia, for a sample of desmethyl-JG365.

New Trialkylsilyl Enol Ether Chemistry. Conjugate Additions without the Enone

Philip Magnus* and Jérôme Lacour

Department of Chemistry and Biochemistry The University of Texas at Austin Austin, Texas 78712 Received January 27, 1992

Triisopropylsilyl (TIPS) enol ethers undergo electrophilic substitution chemistry and retain the triisopropylsilyl group.¹ The normal desilylation that is observed in the case of trimethylsilyl enol ethers is prevented by the bulky isopropyl ligands. While attempting to introduce α -amino functionality into TIPS enol ethers, we examined a number of potential electrophilic nitrogen reagents.² Much to our surprise, it was found that treatment of a variety of TIPS enol ethers with Me₃SiN₃ (2.4 equiv)/PhIO (1.2 equiv)/CH₂Cl₂ at -15 to -18 °C gave excellent yields of the β -azido adduct 2 rather than the expected (normal) α -azido adduct 3 (Scheme I).³ The β -azido adduct most probably arises from the enonium ion 2a and the α -diazide from the onium ion 3a. This new transformation appears to be a member of a general

Scheme I

Scheme II

Scheme III^a

^a(a) Indole/Me₃Al/CH₂Cl₂, -70 °C. (b) m-MeOC₆H₄NMe₂/ Me₂AlCl/hexane, 25 °C. (c) Ét₂AlCN/THF, reflux. (d) Allyltri-nbutylstannane/Me₂AlCl/hexane, -70 °C. (e) RCCH/n-BuLi/ $Me_2AlCl/hexane$, 25 °C. (f) Acetophenone TMS enol ether/ $Me_2AlCl/hexanes$, 25 °C. (g) Cyclohexanone TMS enol ether/ Me₂AlCl/hexanes, 25 °C. (h) RCCH/Cp₂ZrHCl/Me₂AlCl/hexane, 25 °C.

unexplored class of reactions that can be represented by Scheme II.4

To examine the trapping of the enonium ion 2a with nucleophiles other than azide ion, we examined the response of the β -azido adduct 2 to carbon nucleophiles in the presence of Lewis acids. The preliminary results are shown in Scheme III.

Treatment of 2 with indole $(2 \text{ equiv})/\text{Me}_3\text{Al} (2 \text{ equiv})/\text{CH}_2\text{Cl}_2$ at -70 °C gave the 3-substituted derivative 4 (82%). Similarly, the presumed enonium ion 2a could be trapped with m- $MeOC_6H_4NMe_2$ to give 5 (79%). The Nagata reagent⁵ in dichloromethane gave a mixture of 6 and 7 (2:1), whereas the same reaction in THF at reflux gave only 6 (60%). While the addition

⁽¹⁹⁾ Fitzgerald, P. M. D.; McKeever, B. M.; VanMiddlesworth, J. F.;
Springer, J. P.; Heimbach, J. C.; Leu, C. T.; Herber, W. K.; Dixon, R. A. F.;
Darke, P. L. J. Biol. Chem. 1990, 265, 14209-14219.
(20) Erickson, J.; Neidhart, D. J.; VanDrie, J.; Kempf, D. J.; Wang, X.
C.; Norbeck, D. W.; Plattner, J. J.; Rittenbouse, J. W.; Turon, M.; Wideburg,

N.; Kohlbrenner, W. E.; Simmer, R.; Helfrich, R.; Paul, D. A.; Knigge, M. Science 1990, 249, 527-533.

⁽¹⁾ Magnus, P.; Mugrage, B. J. Am. Chem. Soc. 1990, 112, 462.

⁽²⁾ Magnus, P.; Lacour, J.; Bauta, W.; Mugrage, B.; Lynch, V. J. Chem. Soc., Chem. Commun. 1991, 1362. Magnus, P.; Barth, L. Tetrahedron Lett. In press. Unpublished results from this lab.

⁽³⁾ Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 767.

⁽⁴⁾ Treatment of 1 with n-Bu₄N⁺IO₄⁻/TMSN₃/CH₂Cl₂ gave 2 and 3

⁽⁴⁾ Treatment of 1 with *n*-Bugit 104 (1983) (112-612-612 gave 2 and 5 (1:1). B. Kersten, University of Texas at Austin.
(5) Nagata, W.; Yoshioka, M.; Hirai, S. J. Am. Chem. Soc. 1972, 94, 4635. Nagata, W.; Yoshioka, M.; Hirai, M. J. Am. Chem. Soc. 1972, 94, 4644. Nagata, W.; Yoshioka, M.; Terasawa, T. J. Am. Chem. Soc. 1972, 94, 4672. Nagata, W.; Yoshioka, M. Org. React. 1977, 25, 255. Utimoto, K.; Obayashi, M.; Shishiyama, Y.; Inoue, M.; Nozaki, H. Tetrahedron Lett. 1900 27 23200 1980, 21, 3389.

Scheme IV

of allyltri-n-butylstannane to enones is known,⁶ the regiospecific trapping of the enolate with silvlating agents, particularly TIPSCl or TIPSOTf, is a low-yielding reaction.⁷ Consequently, the formation of 8 (80%) is noteworthy. Acetylenic anions are nontransferable ligands in organocuprate chemistry, and indirect methods have been developed to make β -acetylenic ketones.⁸ Recently Kim⁹ has reported the trialkylsilyl triflate promoted addition of alkynylzinc to enones. The enonium ion 2a can be trapped with terminal acetylenes by treatment with n-BuLi followed by Me₂AlCl to give excellent yields of 9, 10, and 11 (98, 70, and 84%, respectively). Trimethylsilyl enol ethers trap 2a to give the mixed TIPS enol ether-ketones 12 and 13 (3:1 diastereomers).¹⁰ This transformation should find useful applications since it allows direct differentiation between the two ketone functionalities. Hydrozirconation of phenylacetylene followed by Me₂AlCl and addition of 2 gave the styrene 14 (46%).¹¹

It is possible to perform a one-pot conversion of a TIPS enol ether into its β -carbon-substituted derivative. This is illustrated in Scheme IV for the conversion of the 4-pyranone TIPS enol ether 16 into 17 (not isolated) and for the direct treatment with allyltri-*n*-butylstannane/Me₂AlCl to give the β -allyl adduct 18 (62%).

This simple and versatile new methodology should find many applications in both the individual reactions and overall strategies of organic synthesis

Acknowledgment. The National Institutes of Health and the National Science Foundation are thanked for their support of this

(6) Hosomi, A.; Iguchi, H.; Endo, M.; Sakurai, H. Chem. Lett. 1979, 977. Mobilio, D.; De Lange, B. Tetrahedron Lett. 1987, 28, 1483-86. Lithium dially/cuprate: House, H. O.; Fisher, W. F. J. Org. Chem. 1969, 34, 3615. (7) Treatment of 3-methylcyclopentenone with Me₂CuLi followed by TIPSOTf/Et₂N/HMPA gave only a 10% yield of the derived TIPS enol ether.

Mugrage, B., unpublished results from this lab.
(8) House, H. O.; Fisher, W. F. J. Org. Chem. 1969, 34, 3615. Corey, E. J.; Beames, D. J. J. Am. Chem. Soc. 1972, 94, 7210. Pappo, P. W.; Dajanni, Z.; Bruhn, M. S.; Brown, H. C.; Palmer, J. R.; Pappo, R. Tetrahedron Lett. 1975, 16, 4217. Sinclair, J. A.; Molander, G. A.; Brown, H. C. J. Am. Chem. Soc. 1977, 99, 954. Corey, E. J.; Wollenberg, R. H. J. Am. Chem. Soc. 1977, 99, 8045. Hooz, J.; Layton, R. B. J. Am. Chem. Soc. 1971, 93, 7320. Hansen,
 R. T.; Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1978, 100, 2245.
 (9) Kim, S.; Lee, J. M. Tetrahedron Lett. 1990, 31, 7627.

(10) Carbocupration: Normant, J. F.; Alexakis, A. Synthesis 1981, 841.
Lipschutz, B. H. Synthesis 1987, 325. Foulon, J. P.; Bourgain-Commerçon,
M.; Normant, J. F. Tetrahedron 1986, 42, 1389. Hydroalumination:
Whitney, C. C.; Zweifel, G. J. Am. Chem. Soc. 1967, 89, 2753. Negishi, E.;
Takahashi, T. Synthesis 1988, 1. Negishi, E. Pure Appl. Chem. 1981, 53, 2333. 2333. Hydrozirconation: Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, 333. Carr, B. D.; Schwartz, J. J. Am. Chem. Soc. 1977, 99, 639. Yoshifuji, M.; Loots, M. J.; Schwartz, J. Tetrahedron Lett. 1977, 15, 1303. Loots, M. J.; Schwartz, J. J. Am. Chem. Soc. 1977, 99, 8045. Van Horn, D. E.; Negishi, E. J. Am. Chem. Soc. 1978, 100, 2252. Negishi, E.; Van Horn, D. E.; Yoshida, T. J. J. Am. Chem. Soc. 1985, 107, 6639. Ireland, R. E.; Wipf, P. J. Org. Chem. 1990, 55, 1425. Lipschutz, B. H.; Ellsworth,
 E. L. J. Am. Chem. Soc. 1990, 112, 7440.
 (11) 1,5-Diketones: Narasaka, K.; Soai, K.; Mukaiyama, T. Chem. Lett.
 Varian K. Soai, K. Mukaiyama, T. P. H. Chem. Lett.

1974, 1223. Narasaka, K.; Soai, K.; Aikawa, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1976, 49, 779. Saigo, K.; Osaki, M.; Mukaiyama, T. Chem. Lett. 1976, 163. For information on the stereoselection, see: Heathcock, C.; Norman, M. H.; Uchling, D. E. J. Am. Chem. Soc. 1985, 107, 2797. Heathcock, C.; Uchling, D. E. J. Org. Chem. 1986, 51, 279. CsF-induced: Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. J. Organomet. Chem. Commun. 1980, 184, 157. Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. J. Chem. Soc., Chem. Commun. 1981, 120. Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. J. Chem. Soc., Chem. Commun. 1981, 120. Boyer, J.; Corriu, R. J. P.; Derz, R.; Reye, C. J. Chem. Soc., Chem. Commun. 1981, 122. Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. Tetrahedron 1983, 39, 117. Montmorillonite clay: Kawai, M.; Onaka, M.; Izumi, Y. J. Chem. Soc., Chem. Commun. 1987, 1203. BF3. OEt2: Duhamel, P.; Hennequin, L.; Poirier, N.; Poirier, J.-M. Tetrahedron Lett. 1985, 26, 6201. Trityl perchlorate: Kobayashi, S.; Murakami, M.; Mukayaima, T. Chem. Lett. 1985, 953. Mukaiyama, T.; Tamura, M.; Kobayashi, S. Chem. Lett. 1986, 1017. TBDMSO-pyrylium salt: Iwasaki, H.; Kume, T.; Yamamoto, Y.; Akiba, K. Tetrahedron Lett. 1987, 28, 6355. Mukaiyama, T.; Tamura, M.; Kobayashi, S. Chem. Lett. 1986, 1017.

research (GM 32718). Rhône Poulenc are thanked for a graduate fellowship (J.L.).

Supplementary Material Available: Listings of spectral details for compounds 4-15 and 18 (11 pages). Ordering information is given on any current masthead page.

Unusual Electrochemical Properties of the Higher Fullerene, Chiral C₇₆

Q. Li and Fred Wudl*

Institute for Polymers and Organic Solids and Departments of Chemistry and Physics University of California at Santa Barbara Santa Barbara, California 93106

Carlo Thilgen, Robert L. Whetten, and François Diederich*

Department of Chemistry and Biochemistry University of California at Los Angeles Los Angeles, California 90024-1569 Received December 16, 1991

. Revised Manuscript Received March 13, 1992

Approximately a year ago, it was discovered that the fullerenes C_{60} and C_{70} have an exceptionally high electron affinity. Two,^{1a} three,^{1b,c} four,^{1d} and five reversible reduction steps^{1e} have been recorded for C_{60} , and the two fullerenes were found to have essentially the same redox properties.^{1b} No reversible oxidation waves were observed in the cyclic voltammograms of both carbon spheres. An explanation for the high electron affinity in terms of pyracyclene units was proposed and shown to be a good model for predicting the chemical reactivity of C_{60} .^{1b} Recently, some of us reported the isolation in pure form and structural characterization of three higher fullerenes, chiral C_{76}^2 (Figure 1) and the two isomers $C_{2\nu}$ - C_{78} and D_3 - C_{78} .³ The onset of the electronic absorption by these compounds occurs at much lower energy than the optical absorption onset measured for C_{60} and C_{70} , and the result of calculations on the electronic structure of the higher fullerenes was used to predict that C_{76} would be both a better donor and a better acceptor than $C_{60}^{2,4}$. Since milligram quantities of the title fullerene have become available in the recent past, it was imperative to determine its electrochemical properties by cyclic voltammetry (CV).

For the isolation of the higher fullerenes, C_{60} and C_{70} were first removed by two chromatographic runs on neutral alumina with hexanes/toluene (95:5) as the eluent. The higher fullerene fraction was subsequently separated in three sequential runs on a 25 \times 2.5 cm Vydac 201-TP C18 reversed-phase column with acetonitrile/toluene (50:50) as the eluent, giving pure C_{76} , C_{2v} - C_{78} , and D_3 - C_{78} as well as a C_{84} fraction containing two isomers.^{3,5-7}

^{(1) (}a) Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flanagan, S.; Haley, M. M.; O'Brien, S. C., Pan, C.; Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.; Curl, W. E.; Clubini, M. A.; Hauge, K. H.; Margrave, J. L.; Wilson, L. J.; Curl, R. F.; Smalley, R. E. J. Phys. Chem. 1990, 94, 8634-8636. (b) Allemand, P. M.; Koch, A.; Wudl, F.; Rubin, Y.; Diederich, F.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Am. Chem. Soc. 1991, 113, 1050-1051. (c) Cox, D. M.; Bahal, S.; Disko, M.; Gorun, S. M.; Greaney, M.; Hsu, C. S.; Kollin, E. B.; Millar, J.; Robbins, J.; Sherwood, R. D.; Tindall, P. J. Am. Chem. Soc. 1991, 113, 2940-2944. (d) Dubois, D.; Kadish, K. M.; Flanagan, S.; Haufler, R. E.; Chibante, L. P. F.; Wilson, L. J. J. Am. Chem. Soc. 1991, 113, 1062 (Children Chem. 2000) 4364-4366. (e) Dubois, D.; Kadish, K. M.; Flanagan, S.; Wilson, L. J. J. Am. Chem. Soc. 1991, 113, 7773-7774

⁽²⁾ Ettl, R.; Chao, I.; Diederich, F.; Whetten, R. L. Nature (London) 1991, 353, 149-153.

⁽³⁾ Diederich, F.; Whetten, R. L.; Thilgen, C.; Ettl, R.; Chao, I.; Alvarez,

M. M. Science (Washington, D.C.) 1991, 254, 1768-1770.
 (4) Cheng, H.-P.; Whetten, R. L. Chem. Phys. Lett., in press. See also: Manolopoulos, D. E. J. Chem. Soc., Faraday Trans. 1991, 87, 2861-2862.

 ⁽⁶⁾ Diederich, F.; Whetten, R. L. Acc. Chem. Res. 1992, 25, 119–126.
 (6) Vydac C18 reversed-phase column: The Separations Group, 17434 Mojave Št., Hesperia, CA 92345.