DOI: 10.1002/ejoc.200601047

Enantio- and Diastereomerically Pure Decalins by Deslongchamps-Type Annulation of Dienolates Containing a Chiral Lactone Substituent

Thomas Tricotet^[a] and Reinhard Brückner*^[a]

Keywords: 1,3-Asymmetric induction / Bicyclo[4.4.0]decane / De(alkoxycarbonylation) / Homoallyl anion equivalent / γ-Lactone fragmentation / Stereoselective synthesis / Tandem reaction

A conceptionally novel 1,3-asymmetric induction has been established. It controls the relative and absolute configuration of up to 5 stereocenters. They emerge from the anionic Diels–Alder reactions ("Deslongchamps annulations") between oxocyclohexenecarboxylates **25**, **29** and dienolates **26**, **30**. The latter contain a γ -lactone. A Ph₃Si–CH₂ substituent therein controls the asymmetry of C–C bond formation with $ds \approx 10$:1. Strangely, the preferred sense of attack of the dienophile is contrasteric. Cycloadduct **31** was processed by an unprecedented fluoride-induced ambient-temperature tandem fragmentation. It turned the lactone moiety into an allyl group and the β -oxo (trimethylsilyl)ethyl ester into a ketone. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Introduction

The stereocontrolled construction of decalins is required in many contexts. The dominating accesses are by Diels-Alder reactions - both inter- and intramolecular -, Robinson annulation - the most conspicuous variant of the latter being the Hajos-Parrish-Eder-Sauer-Wiechert reaction -, and cation- or radical-induced polyene cyclizations. Arguably, a runner-up strategy for establishing decalin scaffolds is the "anionic Diels-Alder reaction" developed by Deslongchamps et al. It is a cyclohexenone annulation highlighted in steroid synthesis repeatedly, the most recently accomplished target being ouabagenin.^[1] Usually, such "Deslongchamps annulations" consist of the addition of an ester-substituted dienolate 2 – generated from Cs_2CO_3 and γ , δ -unsaturated β -oxo ester **3** or so-called а Nazarov reagent^[2] - to an oxocyclohexenecarboxylate 1 (Scheme 1).^[3–6] These entities combine with the indicated simple diastereoselectivity^[7] and in pairs of properly designed reactants with good induced diastereoselectivities as well.^[8,9] Deslongchamps et al. obtained dioxodecalindicarboxylates 5 by such annulations and dioxodecalinmonocarboxylates **6** by the subsequent removal of the CO_2R^3 group. Such annulations $1 + 3 \rightarrow 6$ created up to four new stereocenters which matches the "stereogenecity" of Diels-Alder reactions.

 [a] Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, 79104 Freiburg, Germany Fax: +49-761-2036100
E-mail: reinhard.brueckner@organik.chemie.uni-freiburg.de

Scheme 1. Deslongchamps annulations past (\rightarrow 5, 6) and present (\rightarrow 7, 8; ref.^[10] and this work). Polycyclic structures 9 and 10 to be derived from 8. R_x stands for substituents introduced in the annulation step and R'_x for potentially modified substituents generated thereafter.

SHORT COMMUNICATION

Recently, we showed that dioxodecalindicarboxylates **5** (with $CO_2R^3 = CO_2$ allyl) give dioxodecalinmonocarboxylates $7^{[10]}$ by Tsuji's Pd-catalyzed decarboxylation/allylation.^[11] They and the readily derived decalindiones **8**^[10] display five new stereocenters. By this token their syntheses surpass the "stereogenecity" of a Diels–Alder reaction – a rare attribute in synthetic methodology! In the present study we were able to increase the hitherto unsatisfactory yields of **7** and thereby **8** two- to threefold. This was possible by incorporating lactone- rather than ester-substituted dienolates. At the same time a stereocenter in the lactone moiety allowed to control the absolute configuration of the annulation products. Both features are important steps towards developing type-**8** decalindiones into precursors of tricyclic or tetracyclic structures **9** and **10**.^[12]

Results and Discussion

Our concept is shown in Scheme 2. It emerged from the finding^[13] that in Deslongchamps annulations γ -lactonesubstituted dienolates tolerate a non-hydrogen substituent at one of the positions where ester-substituted dienolates 2 do not.^[10] Accordingly, we expected that dienolates 11 with a γ -chiral γ -lactone moiety would undergo Deslongchamps annulations, too. We hoped that the latter would proceed with considerable induced diastereoselectivity because of the ample precedence for such a selectivity in many other functionalizations of γ -chiral γ -lactone enolates.^[14] Finally, the partial sequence $12 \rightarrow 13 \rightarrow 7$ of our strategy illustrates a previously unrecognized synthetic equivalence between appropriately substituted γ -lactones and a homoallyl group. This sequence was conceived of a nucleophilic (for E = R_3Si) or a reductive (for E = ArS, Hal) elimination (12 \rightarrow 13) followed by protonation and in-situ decarboxylation (13 \rightarrow 7). We were particularly attracted by the possibility of a fluoride-mediated elimination $12 \rightarrow 13$.^[29] This was because of the prospect of cleaving simultaneously the acyclic ester moiety of intermediate 12 - provided the latter would be CO₂-CH₂-CH₂-SiR₃ and not, as shown in Scheme 2, CO₂Me.

Lactone-containing Nazarov reagents 19 and 20 were prepared starting from the readily available triphenylsilvlated ethyl acetate 14^[15] (Scheme 3). Hydroxylaminolysis gave Weinreb amide 15.^[16] Then, allylmagnesium bromide was added, affording the unsaturated ketone 16 (83% overall yield for the 2 steps). We hydroborated its C=C bond intermolecularly and its C=O bond intramolecularly^[17] with Brown's (+)-Ipc₂BH.^[18] After treatment with NaOOH, this furnished 1.4-diol 17 in 75% yield and with an $ee_{,}^{[19]}$ which varied somewhat (90-95%) from experiment to experiment. 1,3-Diols in which the 1-OH group is primary can be selectively oxidized with TEMPO (cat.)/PhI(OAc)2 (stoichiom.) affording hydroxy aldehydes.[20] Under identical conditions, 1,5-diols in which the 1-OH group is primary are oxidized via lactol intermediates giving δ-lactones.^[21] Analogously, we oxidized the primary OH group of a 90% ee specimen of 1,4-diol 17 selectively. This made

Scheme 2. Novel strategy for the asymmetric synthesis of type-8 decalins and challenges faced in its realization.

Scheme 3. Synthesis of Nazarov reagents **19** and **20**. a) HNMe-(OMe)·HCl (1.5 equiv.), *i*PrMgCl (3.0 equiv.), THF, -20 °C, 15 min, **14**, -10 °C, 10 min, 92%; b) AllylMgBr (1.5 equiv.), THF, -20 °C, 15 min, -10 °C, 15 min, 90%; c) (+)-Ipc₂BH (1.05 equiv.), THF, 0 °C, 40 min, 4 °C, 36 h, 0 °C, NaOH (3 M), H₂O₂ (30%), room temp., 10 min, 73%; d) **17** (90% *ee*), PhI(OAc)₂ (2.2 equiv.), TEMPO (10 mol-%), CH₂Cl₂, room temp., 3 h, 84%; e) LDA (1.1 equiv.), THF, -78 °C, 1 h, **23** (1.1 equiv.), 20 min, 77%; f) same as (e) but with **24**, 88%; g) PDC (2.5 equiv.), CH₂Cl₂, room temp., 18 h, 60%; h) same as (g) but 3 d, 74%. PMB = *p*-methoxybenzyl; TEMPO = 2,2,6,6-tetramethylpiperidinoxyl.

SHORT COMMUNICATION

 γ -lactone **18** accessible in 84% yield and with unchanged *ee.*^[22] Since compound **18** crystallized nicely, we were able to determine its absolute configuration crystallographically.^[23] Our result was in accordance with the prediction from the literature.^[17] The lithium enolate of lactone **18** was 1,2-added to crotonaldehyde **(23)** as well as to the more highly substituted α , β -unsaturated aldehyde **24**.^[24] This led to hydroxyalkylated lactones **21** and **22**. Oxidation with PDC took the material on to Nazarov reagents **19** and **20**, respectively. Each of them consisted of two ketone epimers and the enol tautomer.^[25]

A 90% ee sample of Nazarov reagent 19 was annulated to oxocyclohexenecarboxylate 25^[26] under standard Deslongchamps conditions,^[3,4] i.e., by exposure to a suspension of Cs₂CO₃ (0.5 equiv.) in dichloromethane at room temp. (Scheme 4). After 10 h and complete consumption as judged by TLC - of both reactants, we obtained a 91:9 mixture of two spirolactones. The major product possesses stereostructure 27 as revealed by X-ray structural analysis (Figure 1). If the minor spirolactone is epi-27 as we believe,^[27] 27 and epi-27 would be derived from the same dienolate stereoisomer 26 [with a (Z)-configured $C^{\alpha}=C^{1'}$ bond]. In addition, both 27 and epi-27 would be formed with the usual simple diastereoselectivity (ketone exo, ester endo^[3,4]). The difference between annulation products 27 and epi-27 would be the opposite orientation of the newly formed stereogenic bonds relative to the C⁷-CH₂SiPh₃ bond at the inducing stereocenter of the lactone. Unequivocally, the major annulation product 27 stems from an approach of cyclohexenecarboxylate 25 to dienolate 26 from the hindered β -face. This direction of the asymmetric induction is unprecedented in the chemistry of γ -chiral γ -lactone enolates.^[14] The expected combination of the reactants should have occurred on the unhindered α -face of dienolate 26 ($\rightarrow epi$ -27). At present, we have no clue as to what the reason for this behavior is.

The major part of spirolactone 27 was separated from the minor isomer epi-27 by flash chromatography on silica gel.^[28] Treatment of pure 27 with a solution of Bu₄NF in THF led to >63% of a separable (vide infra) 75:25 mixture of decalindione isomers 28 and epi-28. This transformation shows that a γ -[(triphenylsilyl)methyl]- γ -butyrolactone may be used as synthetic equivalent of a homoallyl group. The first step is analogous to the fluoride-induced β -elimination of γ -[(trimethylsilyl)methyl]- γ -butyrolactones delivering γ , δ unsaturated carboxylic acids.^[29] Here, however, the reaction continues. This is because here the γ , δ -unsaturated carboxylic acid intermediate is a β -oxo acid, which decarboxylates and renders the ketone. The configuration of the newly formed, i.e., homoallylic stereocenter in decalindiones 28 and epi-28 was deduced from the H,H coupling constants compiled in Figure 2. We observed one trans-diaxial H,H coupling per cyclohexanone ring, which means that each of them is a chair conformer and in that regard conformationally distinct from predecessor 27. The occurrence of ${}^{4}J_{7eq,5}$ = 1.2 Hz in **28** and its absence $({}^{4}J_{7eq,5} \approx 0 \text{ Hz})$ in *epi-28* imply a W-conformation for substructure H-C⁵-C⁶-C⁷-H^{eq} in 28 and a different array of the same substructure in epi-28. This means that the C^5 -H bond of 28 is equatorial and the C⁵-allyl bond accordingly axial, while the opposite is true for epi-28.

The Deslongchamps annulation of the cesium enolate of Nazarov reagent **20** to oxocyclohexenecarboxylate **29**^[31] proceeded similarly (Scheme 5) as the annulation of Scheme 4. The spirolactones **31** and *epi*-**31** resulted as a 94:6 mixture (76% yield). Again, the underlying stereocontrol is due to a hitherto unprecedented 1,3-asymmetric induction^[14] by the chiral γ -lactone substituent of dienolate intermediate **30**; as in the example of Scheme 4, the favored sense of attack is contrasteric and presently inexplicable.

Isomers **31** and *epi*-**31** were chromatographically^[28] inseparable. Thus, their mixture was subjected to the Bu_4NF -

Figure 1. ORTEP plots of the crystal structure of decalindione 27.^[23] Projection (a) shows relative configuration at C-4a vs. C-8a and a front-view of a twist-boat conformation of cyclohexanone C-1/C-2/C-3/C-4/C-8a (the oxygen atom attached to C-6 is hardly visible). Projection (b) shows relative configurations at C-5 vs. C-4a vs. C-8a vs. C-8 vs. C-7 and represents a view upon a chair conformation of cyclohexanone C-4a/C-5/C-6/C-7/C-8/C-8a (the oxygen atom attached to C-1 and the α -oriented oxygen atom of the dioxolane ring are hardly visible).

SHORT COMMUNICATION

Scheme 4. Deslongchamps annulation of lactone **19** to oxocyclohexenecarboxylate **25**. a) Cs_2CO_3 (0.5 equiv.), CH_2Cl_2 , room temp., 3 h (crude product: **27**/*epi*-**27** = 91:9), **27** (36%) + 75:25 mixture of **27**/*epi*-**27** (23%); b) Bu₄NF (2.2 equiv.), THF, room temp., 10 h (crude product: **28**/*epi*-**28** = 75:25), **28** (37%) + **28**/*epi*-**28** mixture (50:50; 20%) + *epi*-**28** (6%).

Figure 2. ¹H NMR coupling constants (500 MHz in CDCl₃) proving the relative configurations of decalindiones **28** and *epi*-**28**.

induced tandem elimination/decarboxylation reaction first described in the context of Scheme 4. The lactone moieties gave allyl groups thereby. Remarkably, there was an ac-

Scheme 5. Deslongchamps annulation of lactone **20** to oxocyclohexenecarboxylate **29**. a) Cs_2CO_3 (0.5 equiv.), CH_2Cl_2 , room temp., 10 h, 76% of an inseparable mixture of **31** and *epi-31*; b) Bu₄NF (3.0 equiv.), THF, room temp., 10 h, 64% (80% *ee*); c) *p*TsOH·H₂O (0.5 equiv.), acetone/H₂O (2:1), room temp., 2 h, 88%.

companying tandem process, namely the cleavage/decarboxylation of the β -oxo (trimethylsilyl)ethyl ester unit. This reaction appears to be novel, too. It may become a roomtemp. alternative and orthogonal supplement to the Pd-catalyzed cleavage/decarboxylation of β -oxo allyl esters.^[32] The result of this twin-tandem defunctionalization was a 64% yield of decalindione **32**.^[33] This compound possessed 80% *ee*.^[29] This value means – considering that the precursor Nazarov reagent **20** had 90% *ee* – that decalindione **32** was generated from *both* precursors **31** and *epi*-**31** in their mixing ratio of 94:6.

The acid-catalyzed cleavage of the dimethyl ketal moiety of decalindione **32** in wet acetone led to decalintrione **33** in the terminating step of Scheme 5. According to our analyses of the magnitudes of $J_{\text{ring-H,vicinal ring-H}}$ values and ROESY cross-peaks in the 500 MHz NMR spectra of decalindione 32 and decalintrione 33, the latter compounds conserve the *cis* junction of the underlying rings already present in spirolactones 31 and *epi*-31.

Conclusions

The present investigation establishes a conceptually novel 1,3-asymmetric induction as an efficient means for achieving stereocontrol in Deslongchamps annulations. The latter provided substituted decalindiones and -triones with up to five contiguous stereocenters. Functionalized side-chains were incorporated, which should allow further elaboration into tricyclic or tetracyclic ring systems like **9** and **10**. Last but not least, there are two worthwhile spin-off results, namely (1) the use of a silylated lactone enolate as a homoallyl anion equivalent and (2) the first observation of the dealkoxycarbonylation of a β -oxo (trimethylsilyl)ethyl ester by treatment with Bu₄NF at room temp.

Acknowledgments

This work was generously supported by the Fonds der Chemischen Industrie through a Kekulé fellowship for T. T. We are indebted to Dr. Manfred Keller for contributing the X-ray structural analyses and detailed NMR studies.

- a) L. Chen, P. Deslongchamps, Can. J. Chem. 2005, 83, 728– 740; b) Erratum: L. Chen, P. Deslongchamps, Can. J. Chem. 2005, 83, 2144.
- [2] a) I. N. Nazarov, S. I. Zavyalov, *Zh. Obshch. Khim.* 1953, 23, 1703; b) I. N. Nazarov, S. I. Zavyalov, *Chem. Abstr.* 1954, 48, 13667h.
- [3] Deslongchamps annulations with CO₂tBu-containing Nazarov reagents: a) J.-F. Lavallée, P. Deslongchamps, *Tetrahedron Lett.* **1988**, 29, 5117–5118; b) J.-F. Lavallée, P. Deslongchamps, *Tetrahedron Lett.* **1988**, 29, 6033–6036; c) R. Ruel, P. Deslongchamps, *Tetrahedron Lett.* **1988**, 29, 6033–6036; c) R. Ruel, P. Deslongchamps, *Tetrahedron Lett.* **1990**, 31, 3961–3964; d) R. Ruel, K. T. Hogan, P. Deslongchamps, *Synlett* **1990**, 516–518; e) J.-F. Lavallée, C. Spino, R. Ruel, K. T. Hogan, P. Deslongchamps, *Can. J. Chem.* **1992**, 70, 1406–1426; f) R. Ruel, P. Deslongchamps, *Can. J. Chem.* **1992**, 70, 1939–1949; g) D. Chapdelaine, J. Belzile, P. Deslongchamps, *J. Org. Chem.* **2002**, 67, 5669–5672; h) B. Guay, P. Deslongchamps, *J. Org. Chem.* **2003**, 68, 6140–6148.
- [4] Deslongchamps annulations with CO₂Allyl-containing Nazarov reagents: a) O. Lepage, C. Stone, P. Deslongchamps, Org. Lett. 2002, 4, 1091–1094; b) Z. Yang, D. Shannon, V. Truong, P. Deslongchamps, Org. Lett. 2002, 4, 4693–4696; c) O. Lepage, P. Deslongchamps, J. Org. Chem. 2003, 68, 2183–2186; d) A. Rouillard, M.-A. Bonin, P. Deslongchamps, Helv. Chim. Acta 2003, 86, 3730–3739; e) ref.^[3h]; f) S. Trudeau, P. Deslongchamps, J. Org. Chem. 2004, 69, 832–838; g) ref.^[1]
- [5] Deslongchamps annulation with an SO₂Ph-containing Nazarov reagent: ref.^[3e]
- [6] Deslongchamps annulations with SOPh-containing Nazarov reagents: a) ref.^[3e]; b) ref.^[3h]
- [7] exo with respect to the oxo group and endo with respect to the ester group of dienophiles 1. This equals the simple diastereoselectivity of SnCl₄-catalyzed Diels–Alder reactions between neutral dienes and oxocyclohexenecarboxylates: a) H.-J. Liu, T. K. Ngooi, Can. J. Chem. 1984, 62, 2676–2681; b) H.-J. Liu, T. K. Ngooi, E. N. C. Browne, Can. J. Chem. 1988, 66, 3143–3152.

- [8] Diastereoselectivity in Deslongchamps annulations induced by chiral oxocyclohexenecarboxylates: a) ref.^[3c]; b) ref.^[3e]; c) ref.^[3f]; d) ref.^[4f]; e) ref.^[1]
- [9] Diastereoselectivity in Deslongchamps annulations induced by chiral dienolates: a) ref.^[4a]; b) ref.^[4c]; c) ref.^[4d]
- [10] T. Tricotet, R. Brückner, *Tetrahedron Lett.* 2006, 47, 8499-8502.
- [11] a) I. Shimizu, T. Yamada, J. Tsuji, *Tetrahedron Lett.* 1980, 21, 3199–3202; b) J. Tsuji, T. Yamada, I. Minami, M. Yuhara, M. Nisar, I. Shimizu, *J. Org. Chem.* 1987, 52, 2988–2995.
- [12] In order to attain tetracycles 9 or 10 from 7 via 8, substituent R¹ must be functionalized in anticipation of the second ringclosure. Implementing such an option we chose R¹ = CH₂-CH₂-OPMB in our study (PMB = *p*-methoxybenzyl).
- [13] T. Tricotet, Dissertation, University of Freiburg, 2006.
- [14] Representative examples for the selective functionalization of lithium enolates of γ-chiral γ-lactones by electrophiles ("E[⊕]") from the unhindered side: a) E[⊕] = proton source: S. Takano, W. Uchida, S. Hatakeyama, K. Ogasawara, *Chem. Lett.* 1982, 733–736; b) E[⊕] = RX: K. Tomioka, H. Mizuguchi, K. Koga, *Chem. Pharm. Bull.* 1982, 30, 4304–4313 and references cited therein; c) E[⊕] = RX, RCHO: C. Anceau, G. Dauphin, G. Coudert, G. Guillaumet, *Bull. Soc. Chim. Fr.* 1994, 131, 291–303; d) E[⊕] = MoO₅-pyridine-HMPA: S. Hanessian, S. P. Sahoo, P. J. Murray, *Tetrahedron Lett.* 1985, 26, 5631–5634; e) E[⊕] = Ph₂S₂:L. J. Wilson, D. C. Liotta, *J. Org. Chem.* 1998, 63, 2161–2167. The same asymmetric induction is encountered in the hydrogenation of α-(arylmethylene)-γ-valerolactones (ref.^[14b]).
- [15] We prepared ester 14 from ethyl diazoacetate, Ph₃SiH, and either Rh₂(OAc)₄ as described by V. Bagheri, M. P. Doyle, J. Taunton, E. E. Claxton, *J. Org. Chem.* 1988, 53, 6158–6160 or Cu(OTf)₂ as described by O. Audrey, Y. Landais, D. Planchenault, V. Weber, *Tetrahedron* 1995, 51, 12083–12096.
- [16] All new compounds gave satisfactory ¹H and ¹³C NMR spectra and either correct combustion analyses (except oxo ester **29**, which was used without purification, and β -hydroxylactones **21** and **22**, which were oxidized without characterization) or correct HRMS data (**19**, **20**).
- [17] Method: G. A. Molander, K. L. Bobitt, J. Org. Chem. 1994, 59, 2676–2678.
- [18] Prepared from (-)-α-pinene as described by H. C. Brown, N. N. Joshi, J. Org. Chem. 1988, 53, 4059–4062.
- [19] The *ee* of diol **17** was determined by HPLC {Chiralpak AD column, *n*-heptane/*i*PrOH 90:10, 0.8 mL/min, 23 °C, UV detection 223 nm; $t_R[(S)$ enantiomer] = 14.9 min, $t_R[(R)$ enantiomer] = 19.7 min}, the result varying (90–95%) with the (+)-(IPC)₂-BH sample used.
- [20] A. De Mico, R. Margarita, L. Parlanti, A. Vescovi, G. Piancatelli, J. Org. Chem. 1997, 62, 6974–6977.
- [21] T. M. Hansen, G. J. Florence, P. Lugo-Mas, J. Chen, J. N. Abrams, C. J. Forsyth, *Tetrahedron Lett.* 2003, 44, 57–59.
- [22] The *ee* of lactone **18** was determined by HPLC {Chiralpak AD column, *n*-heptane/*i*PrOH 97:3, 0.8 mL/min, 23 °C, UV detection 223 nm; $t_{\rm R}[(S)$ enantiomer] = 13.1 min, $t_{\rm R}[(R)$ enantiomer] = 14.4 min}.
- [23] CCDC-627185 (for 18) and -627186 (for 27) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [24] α,β-Unsaturated aldehyde 24 was prepared from p-anisaldehyde and propane-1,3-diol in 3 known steps (F. M. Cordero, F. Pisaneschi, M. Gensini, A. Goti, A. Branchi, *Eur. J. Org. Chem.* 2002, 1941–1951) followed by a Wittig reaction with Ph₃P=C(Me)–CH=O (prepared by the procedure of R. H. Schlessinger, M. A. Poss, S. Richardson, P. Lin, *Tetrahedron Lett.* 1985, 26, 2391–2394).
- [25] The ¹H NMR spectrum (500 MHz, CDCl₃) of Nazarov reagent 19 showed a 33:30:37 mixture of 2 diastereomeric ketones and

SHORT COMMUNICATION.

an enol, respectively, the spectrum of Nazarov reagent **20** a quite differently composed 52:45:3 mixture.

- [26] Oxocyclohexenecarboxylate 25 was prepared from 4,4-(ethylenedioxy)cyclohexanone in 3 steps as described by D. Liotta, C. Barnum, G. Zima, C. Bayer, H. S. Kezar III, J. Org. Chem. 1981, 46, 2920–2923.
- [27] This assignment accomodates the following observations: a) the ¹H NMR subspectra of the A-ring/B-ring moieties of compounds *epi-***27** and **27** are nearly identical; b) the proton at C^{γ} of the lactone moiety is deshielded in the major ($\delta_{27} = 4.91$ ppm) compared to the minor isomer ($\delta_{epi-27} = 4.57$ ppm); this appears to reflect the proximity between the γ -H and the B-ring carbonyl group in isomer **27**.
- [28] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923– 2925.
- [29] a) G. Schmid, W. Hofheinz, J. Am. Chem. Soc. 1983, 105, 624– 625; b) T. Mori, K. Suzuki, Chem. Lett. 1989, 2165–2168.
- [30] The *ee* of decalindione **32** was determined by HPLC [Chiralpak AD column, *n*-heptane/*i*PrOH 95:5, 0.8 mL/min, 23 °C, UV detection 226 nm; $t_{\rm R}$ (minor enantiomer) = 17.4 min, $t_{\rm R}$ (major enantiomer) = 20.8 min].
- [31] Oxocyclohexenecarboxylate 29 was prepared in 5 steps: (1) addition (!) of 2 equiv. of MeOH to 3-(furan-2-yl)acrylic acid giving dimethyl 4-oxopimelate, yet not employing HCl gas as in the original report (W. Markwald, Ber. Dtsch. Chem. Ges. 1887, 2811-2817) but solvolyzing SOCl₂ as published for the otherwise analogous preparation of diethyl 4-oxopimelate (A. L. Gutman, K. Zuobi, T. Bravdo, J. Org. Chem. 1990, 55, 3546-3552); (2) ketal formation with HC(OMe)₃/pTsOH; (3) Dieckmann condensation as reported by J.A. Marshall, R.A. Ruden, J. Org. Chem. 1971, 36, 594-596; (4) transesterification with 2-(trimethylsilyl)ethanol catalyzed by ClBu₂SnOSnBu₂OH (method: J. Otera, T. Yano, A. Kawabata, H. Nozaki, Tetrahedron Lett. 1986, 27, 2383-2386); (5) successive treatments with PhSeCl/pyridine and H2O2 as described in ref.^[4f] Because of the instability of oxocyclohexenecarboxylate 29 its phenyl selenide precursor was oxidized directly before use. This afforded 29 in 100% yield sufficiently pure.
- [32] T. Tricotet, R. Kramer, R. Brückner, unpublished results.

[33] (4aS,5S,7R,8S,8aR)-5-Allyl-4,4-dimethoxy-3,4,4a,7,8,8ahexahydro-8-{2-[(4-methoxybenzyl)oxy]ethyl}-7-methylnaphthalene-1,6(2*H*,5*H*)-dione (32): At 0 °C Cs₂CO₃ (180 mg, 0.55 mmol, 0.5 equiv.) was added to a stirred solution of Nazarov reagent 19 (656 mg, 1.11 mmol) in CH₂Cl₂ (10 mL). After 5 min, a solution of oxocyclohexenecarboxylate 29 (333 mg, 1.11 mmol, 1.0 equiv.) in CH₂Cl₂ (5 mL) was added dropwise over a period of 1 min. A yellow heterogeneous mixture resulted, which was stirred at 0 °C for 1 h and at room temp. for 2 h and then filtered through a pad of silica gel. The pad was eluted first with CH₂Cl₂, then with EtOAc. The late fractions were collected and the solvent was evaporated under reduced pressure. This provided a mixture of annulation products 31 and epi-31 (750 mg, 76%). Without further purification, a portion of this mixture (154 mg, 173 µmol) was dissolved in THF (4 mL). Bu₄NF (1.0 м in THF, 518 µL, 518 µmol, 3.0 equiv.) was added dropwise while stirring at 0 °C during 2 min. The mixture was warmed to room temp. slowly (3 h), stirred for another 7 h, and poured into a mixture of water (20 mL) and brine (10 mL). Extraction with Et_2O (4 × 30 mL), drying of the combined extracts with Na₂SO₄, evaporation of the solvent under reduced pressure, and flash chromatography on silica gel^[28] (cyclohexane/EtOAc, 5:1) furnished the title compound (49.0 mg, 64%) as a colorless oil. ¹H NMR (500.0 MHz, (49.0 mg, 64%) as a coloness oil. 'H NMK (500.0 MHz, CDCl₃): $\delta = 0.97$ (d, $J_{7-CH3,7} = 6.6$ Hz, $7-CH_3$), 1.03 (m_c, 1''-H^A), 1.72 (dddd, $J_{gem} = 14.3$ Hz, $J_{1''-H(B),2''-H(A)} = J_{1''-H(B),2''-H(B)} = 7.1$ Hz, $J_{1''-H(B),8} = 4.0$ Hz, $1''-H^B$), 1.93 (m_c, 3-Hax), 2.16 (m_c, 5-H), 2.22 (m_c, 3-Heq), 2.44–2.54 (m, 4a-H, 2-H₂, 1'-H^A), 2.66 (m_c, 1'-H^B), 2.76 (m_c, 8-H), 2.87 (dq, $J_{7,7-CH3} = J_{7,8} = 6.4$ Hz, 7-H), 2.98 (dd, $J_{8a,8} = 4.7$ Hz, $J_{8a,4a} = 1.0$ Hz, g_{2} , H) 3.15 (ϵ 4.0 Me) 3.17 (ϵ 4.0 Me) AB signal (δ). 1.9 Hz, 8a-H), 3.15 (s, 4-OMe), 3.17 (s, 4-OMe), AB signal (δ_A = 2.88, $\delta_{\rm B}$ = 2.88, $J_{\rm AB}$ = 6.5 Hz, 2''-H₂), 3.80 (s, OMe, PMB), AB signal ($\delta_A = 4.34$, $\delta_B = 4.42$, $J_{AB} = 11.7$ Hz, OCH₂Ar), 4.91 $(m_c, 3'-H^E), 4.96 (m_c, 3'-H^Z), 5.72 (dddd, J_{trans} = 17.1 Hz, J_{cis} = 10.2, J_{2',1'-H(A)} \approx J_{2',1'-H(B)} = 6.8 Hz, 2'-H), 6.85 (m_c, J_{2',1'-H(A)} \approx J_{2',1'-H(B)} = 0.8 Hz, 2'-H), 0.85 (m_c, J_{2',1'-H(A)} = 0.8 Hz, 2'-H), 0.$ $2 \times H_{meta}$), 7.20 (m_c, $2 \times H_{ortho}$).

Received: December 1, 2006 Published Online: January 25, 2007