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A concise asymmetric route for the synthesis of a novel
class of glucocorticoid mimetics containing
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Abstract—An asymmetric route was developed for the synthesis of a class of novel glucocorticoid receptor ligand derivatives 1. The
key step of this synthesis involves a diastereoselective addition of chiral sulfoxide anion to a trifluoromethyl ketone precursor. The
resulting diastereomers are readily separable and can be converted to the corresponding chiral epoxide and chiral alkyne interme-
diates (2 and 3). This sequence of reactions is suitable for large-scale preparation of these chiral intermediates and derivatives of 1.
The absolute stereochemistry of the biologically active enantiomer of these GR ligands has also been determined.
� 2005 Elsevier Ltd. All rights reserved.
Glucocorticoids (GCs) and their derivatives such as
dexamethasone and prednisolone1 belong to a class of
steroidal ligands that targets the glucocorticoid receptor
(GR). These agents, which modulate GR function, have
found wide use in the treatment of various inflammato-
ry, autoimmune, and allergic disorders.2 Recently, we
have disclosed a novel series of GR ligands that belongs
to the trifluoromethyl alcohol class typified by 1.3 To
access this class we have employed epoxide 2 and alkyne
3 as key intermediates.3 Described herein is an asymmet-
ric route to these two synthetic intermediates and its
application to the determination of the absolute stereo-
chemistry of the biologically active enantiomer of this
class of GC mimetics.
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This chiral process can be illustrated by the synthesis of
chiral epoxide 7a and its enantiomer 7b as outlined in
Scheme 1. The key step involves a diastereoselective
addition of chiral sulfoxide anion to a trifluoromethyl
ketone to form the corresponding chiral b-hydroxy-b-
trifluoromethyl-sulfoxide adducts. In the literature,
there are limited examples of such diastereoselective
addition to fluorinated ketones.4 Thus, reaction of
trifluoromethyl ketone 4 with the lithium anion of (R)-
(+)-methyl p-tolylsulfoxide in THF at �78 �C afforded a
mixture of the corresponding chiral sulfoxides 5a and b
(dr = 2.1:1). These diastereomers were easily separated
by column chromatography with the faster eluting
product being the major diastereomer 5a. The optical
purity was determined to be >99% de for both isomers
by HPLC analyses.5 X-ray crystallographic analysis
allowed assignment of 5a as the (S,R)-isomer (Fig. 1).6

Each of the separated diastereomers was then reduced
using sodium iodide and trifluoroacetic anhydride in
acetone at �40 �C to afford the corresponding thiol
ethers 6a and b in quantitative yields.7 Treatment of
the thiol ether enantiomers with trimethyloxonium
tetrafluoroborate in CH2Cl2 followed by addition of
aqueous potassium carbonate solution provided the
desired chiral epoxides 7a and b in optically pure form.8

This sequence of reactions was applied to the synthesis
of several other chiral epoxides (R)-2 and the results
are summarized in Table 1. In all cases, similar yields
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Scheme 1. Reagents and conditions: (a) lithium diisopropylamide, (R)-(+)-methyl p-tolylsulfoxide, THF, �78 �C, 91% (5a:5b = 2.1:1); (b) NaI,

trifluoroacetic anhydride, acetone, �40 �C, >99%; (c) trimethyloxonium tetrafluoroborate, CH2Cl2, rt, then aq K2CO3, rt, 95%.

Table 1. Synthesis of chiral epoxides
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Entry R1 Sulfoxide %

yield (dr)

Thiol ether %

yield

Epoxide %

yield

1

F

85 (2.1:1) >99 78

2

Cl

O

80 (2.2:1) 99 95

3

Br

O

65 (2.1:1) 99 95

Figure 1. X-ray crystal structure of 5a.
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and selectivity were observed. The enantiomeric epox-
ides (S)-2, if desired, can be specifically targeted using
(S)-(�)-methyl p-tolylsulfoxide.

These chiral epoxides can be ring-opened by various car-
bon, oxygen, nitrogen, and sulfur nucleophiles to afford
derivatives of formula 1 or their precursors.3 As an
example, treatment of 7a with lithium trimethylsilylacet-
ylide in DMSO followed by desilylation afforded chiral
alkyne intermediate 8 (Scheme 2). The alkyne moiety
in 8 is a versatile synthetic handle and can be converted
to a variety of heteroaryl groups such as indoles and
azaindoles.3

In order to determine the absolute stereochemistry of
the more biologically active enantiomer of this class of
GR ligands, compounds 9a and b were separately
prepared from the corresponding chiral epoxides 7a
and b (Scheme 3) and tested in a glucocorticoid receptor
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Scheme 2. Reagents and conditions: (a) lithium trimethylsilylacetylide,

DMSO, rt; (b) tetrabutylammonium fluoride, THF, rt, 60% (two

steps).
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Scheme 3. Reagents and conditions: (a) p-chlorophenylmagnesium

bromide, CuI, ether, rt, 28–30%.
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binding assay.9 Compound 9a was shown to be the more
potent enantiomer in this binding assay with a GR bind-
ing IC50 of 99 nM. In contrast, compound 9b was less
active in this assay (IC50 = 2000 nM).10 It should be not-
ed that the desired enantiomer 9a is derived from the
major sulfoxide diastereomer 5a.

In summary, a concise asymmetric route was developed
for the synthesis of a class of glucocorticoid receptor li-
gand derivatives 1. The key step of this synthesis is a dia-
stereoselective addition of chiral sulfoxide anion to a
trifluoromethyl ketone precursor. The resulting diaste-
reomers are readily separable and can be converted to
the corresponding chiral epoxide and chiral alkyne inter-
mediates. This sequence of reactions is suitable for large-
scale preparation of these chiral intermediates and deriv-
atives of formula 1. The absolute stereochemistry of the
more biologically active enantiomer of these GR ligands
has also been determined.
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