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Ab#wt: $vyl-l-pjqhqh& (PRPP) is a key_ intamcdb in 8 vaic4y of impattMt meElbolic pt3tbiys. A total 
synthesisofthecycbpmtyladogofPRPPhssbeeoaca@hd. Afarrrmltisynmesisof~=tht=cf~ma@ 
whose aLmllllk cor@mtioll comsponds tothatofPRPPisalaorcqmcd. 

In most organisms the biosynthesis of pyridine. pyrimdk, aud pmine nucleddes. as well as the 

biosynthesis of the ammatic amino acids his&line and tryptaphan, involves a group often enzymes which am 

known as phospharibosy1transferases.l Each of these enzymes catalyzes a reaction between a-~-5- 

phosphoribosyl-1-pyrophosphate (PRPP) (1) (Scheme I) and a second substrate which contains nitrogen. In 

every case, the rtaction involves displacement of the pympho@ate group by a nitrogen atom of the subsmue 

with inversion of configuratian at C- 1 of PBPP.l The transition-state for the maction is believed to involve an 

enzyme-stabilized carbonium iun.1 Because of the key role played by the pkqWbusyleansfera9e s.inhibitors 

of some of these enzymes can possess antipamsitic or anticamzer a~tivity.~ For this I#LSO~, we would like to 

report the first total synthesis of la-pyrophosphoryl-2a,3a+cyclopentanemethanol-5-phosphate (2), which is 

the cyclopentyl analog of PBPP. It is anticipated that the analog 2 will be much less dve than PRPP because 

nooxygenatwnis~senttos~thecarboaiumiongenaatedbythedepartlPeotthepyrophosphatt 

moiety. The compound should thedote be of intaest for mechanistic and inhibitcq stdies of many of the 

phosphoribosyltransferases. Fu&zmore, investigations3 of the biosynthesis of the carbocyclic mdeoside 

antibiotic aristemmycin have suggested that the PBPP analog 2 may be involved in aristemmycin biosynthesis. 

The availabiity of 2 may themk facilitate studies of the biosynthesis of adxqdic nuckosides. 

A synthesis of (i)-2 was canied out (Scheme l) beginning with the knowd diacetoxydiol3 which was 

protected as its 0-benzylidene derivative and subsquqtly amvad into the O-benzyli&ne cyclopentenone 4, 

using chemistry similar to that employed in the O-isopmpylidme series.4 By aurying out the benzylikne 

protection reaction at low temperatme, it was fomxt that the benzylide~ &dative con&ted mostly of one 

epimer, a Esult which simpUied the tH NMR spectm of all the intamaliates bearing the benzylikne group. 

Photochemical addition of methanol% to the cyclopentenont 4 yielded t& amqxding cyclopentanone. The 

nextstageofthesynthesisrequiredthegeaerationofahy~llgroupwiththta~~atC-1. Inorder 

toobtaina~~~soertospecificreductiaaintbe&Jhrdsense,itwssfoundoectssary tocaryoutthe 

reaction using sodium triacetoxybmohydrick? and to leave the C-5 hydroxyl gmup free. The resulting diol5 

was shown to posssess the correct stereochemistry at C- 1 by means of NOE experiments. Selective 

phosphorylation of the diol5 with diphenyl chlorophosphate was accamplished by using N,Ndiisopmpyl- 

ethylamine in CHZQZ. Various other bases inchding pydine, DhMP, and triethylamine failed to give 
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‘Key (9 PhCH(OMej2, p-TsOH, CH&, -15 - 0”; (ii) KOH, MeOH, rt; (iii) DCC, DMSO, TFA, pyridtne, rt; 

(iv) F&CO, MeOH, hv 350~14 rt; W NaBH(OAc), F%H, I$ (vi) (PhO),(OWCl, EtNUPr), rt; 

kit) 2,2 +tdbmmuxthyl phoephoromorpholtnochloridate, pyrldine, 45O; (viii) Cu, Zn, DMF, a; 

(ix) (n-Bu@JNH* w;, pyridine, rt; (x) PtO, H, EtOH, rt. 

selective phosphmylatim. The resulting phosphate ester 6 was then heated with 2,2,2-tribtomoethyl 

phosphommorpholinochlaidate6 and pyridine to yield the mspholidate derivative 7. Due to the hindered nature 

of the hydroxy group in 7, the reaction with the phospho~~~otpholinochlaridate Feagent was quite slow, even in 

pyridine at 45”. Attempts to speed up the traction by using other bases, incmasing the &on temperatme, or 

the in situ generation of the bmmidate or iodidate forms of the reagent went unsuccessful. The tribtmnoethyl 

group was removed fkom 7 using Cu/Zn dust in DIM@ and the excess Cu/Zn removed by filtration befoxe 

reaction between the deblocked mtxpholidate and excess tri-n-butylammonium phosphate7 to give the 

pyrophosphate 8. In order to facilitate the subsequent pmikation steps, the ai-n-butylammonium phosphate 

was prepared from [32plphosphoric acid. The pymphosphate 8 was purified by gel filtration on LH-20 using 

40% ethyl acetate in chlorofarm and then &pruecM using Adam’s catalyst and H2 at atmosphetic pressure to 

yield 2 in the form of its ai-n-butylammonium salt.8 This salt was purified by chromatography on 

polyethyleneimine cellulose using a triethylammonium bicarbonate gradient to yield 2 as its uiethylammonium 

salt. The triethylammonium salt of 2 was characterized by ‘H, *SC, and 3lP NMR analysis and by a Bird- 

pulsed 13C-lH xwerse HE’lIZR experiment.9 All of the spectral data we= consistent with the assigned 

stfu~ture.~O The triethylammonium salt of 2 was converted into the sodium salt using the method of Khorana et 
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al.11~ 12 For some biological studies, it may be desirable to employ the enantiomer of 2 whose absolute 

contiglration m to that of PRPP. The appqniateenantiumerof2canbeobminedftomthecorrect 

enantiomer of the intennediaoe 6 (Scheme I). In ader to complete a famal total synthesis of optically active 2, 

in~~ediate6ofthecorrectabsolute~harrkenpnparedfmmtheknownt~optic~yacti~ketone 

9 by the route shown in Scheme II. Investigations of the biolw activity of 2 am in progress. 
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‘Key 0) Ph,CO, MeOH, hv 350 nm, a; (ii) NaBH(OAc), PhH, rt; (iii) PhCOU, pyridine, rt; (iv) 85% HOAc, cat. TFA, a; 

W PhCH(OMe&, p-TsOH, -15 - 0”; (vi) NaOH, MeOH, rt; (vii) (PhO),(OW’CI, EtNuR), rt. 
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