Synthesis of β -Boswellic Acid Analogues with a Carboxyl Group at C-17 Isolated from the Bark of Schefflera octophylla

Lothar Bore,[†] Tadashi Honda, and Gordon W. Gribble*

Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755-3564

Grib@Dartmouth.edu

Received June 7, 2000

 β -Boswellic acid (1) and its analogues, 2 and 3, having a β -carboxyl group at C-4 and an α -hydroxyl group at C-3 in ring A as structural features, are reported to have interesting biological, pharmacological, and medicinal activities, such as antiinflammatory activity, anti-brain tumor activity, inhibition of human leukocyte elastase, anti-complementary activity, and 5-lipoxygenase inhibitory activity.¹ In connection with our triterpenoid project involving the design and synthesis of various oleanane and ursane triterpenoids to discover new structures with high potency against inflammation and/or carcinogenesis,² we found that 3-epi-ursolic acid (4) inhibits production of nitric oxide (NO) induced by interferon- γ in mouse macrophages^{2g} and suppresses the inducible cyclooxygenase (COX-2) gene,^{2b} although ursolic acid (5) does not show such activity in either assay. Therefore, to further discern structure-activity relationships, we designed β -boswellic acid analogues with a carboxyl group at C-17 having the general structural formula I based on structures of both β -boswellic acid (1) and 3-epi-ursolic acid (4). Our literature survey of these structures disclosed 3α -hydroxyurs-12-ene-23,28-dioic acid (6), a naturally occurring triterpene isolated from the bark of Schefflera octophylla, and its derivatives **7**–**9**.³ We herein describe the first synthesis of the 28-methyl ester 7 and the 23,-28-dimethyl ester 9 of this naturally occurring triterpene

6 from commercially available ursolic acid (5). Our work also confirms the structures proposed for these compounds.

Results and Discussion

Functionalization of the hindered C-4 equatorial methyl group of ursolic acid (5) was achieved by Baldwin's method, which involves cyclopalladation of the methyl group at C-4 from a 3-one oxime functionality.⁴ Dimeric organopalladium complex 11 was prepared in 98% yield from methyl ursonate oxime (10),⁵ which was prepared in three steps from 5 according to a known method, with Na₂PdCl₄ and NaOAc in AcOH. Acetylation of **11** with Ac₂O in the presence of Et₃N and DMAP in CH₂Cl₂ gave an unstable acetate, 12, which was immediately oxidized with Pb(OAc)₄ and pyridinium acetate in THF, followed by reductive workup with NaBH₄ to afford diacetate 13 (81% yield from 11). Deacetylation of 13 with Na₂CO₃ in MeOH gave oxime 14 (98% yield), which was hydrolyzed with TiCl₃ in aqueous THF to give ketol **15**⁶ in 88% yield.

Transformation of 15 into the target compounds 7 and 9 has the following three problems. First, because 15 has an α -hydroxymethyl-ketone functionality in ring A, the hydroxymethyl group is readily cleaved via a retro-aldol reaction under basic conditions. Second, if an intermediate that is derived from **15** has a β -keto-carboxylic acid functionality in ring A, decarboxylation readily occurs under both basic and acidic conditions. Third, conversion of a carbonyl group at C-3 into an α -hydroxyl group by

^{*} To whom correspondence should be addressed. Phone: 603-646-3118. Fax: 603-646-3946.

Present address: Ciba Specialty Chemicals Schweizerhalle Inc., Postfach 1130, CH-4133 Pratteln, Switzerland. (1) (a) Simmet, T.; Ammon, H. P. T. German Patent, DE 4445728

A1, 1996; Chem. Abstr. 1996, 125, 67823. (b) Safayhi, H.; Rall, B.; Sailer E. R.; Ammon, H. P. T. J. Pharmacol. Exp. Ther. 1997, 281, 460. (c) Knaus, U.; Wagner, H. *Phytomedicine* **1996**, *3*, 77. (d) Safayhi, H.; Sailer, E. R.; Ammon, H. P. T. *Phytomedicine* **1996**, *3*, 71. (e) Sailer, E. R.; Hoernlein, R. F.; Subramanian, L. R.; Ammon, H. P. T.; Safayhi, H. Arch. Pharm. (Weinheim, Ger.) 1996, 329, 54.

^{(2) (}a) Honda, T.; Finlay, H. J.; Gribble, G. W.; Suh, N.; Sporn, M. B. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1623. (b) Finlay, H. J.; Honda, T.; Gribble, G. W.; Danielpour, D.; Benoit, N. E.; Suh, N.; Williams, C.; Sporn, M. B. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1769. (c) Suh, N.; Honda, T.; Finlay, H. J.; Barchowsky, A.; Williams, C.; Benoit, N. E.; Xie, Q.; Nathan, C.; Gribble, G. W.; Sporn, M. B. Cancer Res. 1998, 58, 717. (d) Honda, T.; Rounds, B. V.; Gribble, G. W.; Suh, N.; Wang, Y; Sporn, M. B. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 2711. (e) Suh, N.; Wang, Y.; Honda, T.; Gribble, G. W.; Dmitrovsky, E.; Hickey, W. F.; Maue, R. A.; Place, A. E.; Porter D. M.; Spinella, M. J.; Williams, C. R.; Wu, G.; Dannenberg, A. J.; Flanders, K. C.; Letterio, J. J.; Mangelsdorf, D. J.; Nathan, C. F.; Nguyen, L.; Porter, W. W.; Ren, R. F.; Roberts, A. B.; Roche, N. S.; Subbaramaiah, K.; Sporn, M. B. *Cancer Res.* **1999**, *59*, 336. (f) Honda, T.; Rounds, B. V.; Bore, L.; Favaloro, F. G., Jr.; Gribble, G. W.; Suh, N.; Wang, Y.; Sporn, M. B. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3429. (g) Honda, T.; Gribble, G. W.; Suh, N.; Finlay, H. J.; Rounds, B. V.; Bore, L.; Favaloro, F. G., Jr.; Wang, Y.;
Sporn, M. B. J. Med. Chem. 2000, 43, 1866.
(3) Sung, T. V.; Lavaud, C.; Porzel, A.; Steglich, W.; Adam, G. Phytochemistry 1992, 31, 227.

^{(4) (}a) Baldwin, J. E.; Jones, R. H.; Najera, C.; Yus, M. Tetrahedron **1985**, *41*, 669. (b) Carr, K.; Saxton, H. M.; Sutherland, J. K. J. Chem. Soc., Perkin Trans. 1 **1988**, 1599. (c) Peakman, T. M.; Lo ten Haven,

⁽⁵⁾ Vasue, M.; Sakakibara, J.; Kaiya, T. J. Pharm. Soc. Jpn. (Yakugaku Zasshi) 1973, 93, 296, and references therein.
(6) Triterpene acid corresponding to this methyl ester 15 is a

naturally occurring triterpene isolated from twigs and leaves of *Cussonia natalensis*: Fourie, T. G.; Matthee, E.; Snyckers, F. O. *Phytochemistry* **1989**, *28*, 2851. This conversion of ursolic acid (**5**) into 15 is also the first synthesis of this natural product.

^a Key: (a) CH₂N₂, Et₂O, THF; (b) Jones, acetone; (c) NH₂OH·HCl, NaOAc, MeOH, CH₂Cl₂; (d) Na₂PdCl₄, NaOAc, AcOH; (e) Ac₂O, Et₃N, DMAP, CH₂Cl₂; (f) Pb(OAc)₄, pyr., AcOH, THF; NaBH₄, NaOH (aq); (g) Na₂CO₃, MeOH; (h) TiCl₃, NH₄OAc, H₂O, THF.

^{*a*} Key: (a) ethylene glycol, PPTS, benzene; (b) BnBr, KH, *n*-Bu₄NI, THF; (c) *p*-TsOH, PPTS, acetone; (d) Al(*i*-PrO)₃, *i*-PrOH; (e) TBSCl, KH, 18-crown-6, THF; (f) H₂, 10% Pd/C, THF; (g) RuO₂·*x*H₂O, NaIO₄, H₂O, CH₃CN, CCl₄; (h) 48% aq HF, CH₃CN; (i) CH₂N₂, Et₂O, THF.

reducing agents was initially considered to be difficult because the β -face of the C-3 carbonyl group of **15** is sterically hindered. However, our literature survey revealed that Meerwein–Ponndorf reduction of 3-oxours-12-en-28-oic acid (ursonic acid)⁷ gives 3-epi-ursolic acid (**4**) predominantly.^{8,9} Therefore, in considering these problems, we adopted the synthetic route shown in Scheme 2. Because direct benzylation of **15** did not give benzyl ether **18** due to a retro-aldol reaction as expected, we attempted to synthesize **18** via ethylene ketal **16**. Ketalization of **15** with ethylene glycol in the presence of PPTS in benzene gave **16** in 99% yield. Benzylation of **16** with benzyl bromide in the presence of KH and *n*-Bu₄-NI in THF afforded benzyl ether **17** in 94% yield. Ketone **18** was obtained in 91% yield by deketalization of **17** with *p*-TsOH and PPTS in acetone. Pleasingly, as we initially expected, Meerwein–Ponndorf reduction of **18** gave the desired α -alcohol **19** as the major product and β -alcohol **20** as the minor product (72% and 28% yield, respectively). Structures of both alcohols were assigned by ¹H NMR. Each proton at C-3 of **19** and **20** is observed at δ 3.70 ppm (1H, t, J = 2.3 Hz) and δ 3.64 ppm (1H, dd, J= 4.5, 10.5 Hz), respectively. Protection of the C-3 hydroxyl group of **19** with *tert*-butylchlorodimethylsilane

⁽⁷⁾ Kuwada, S.; Matsukawa, T. J. Pharm. Soc. Jpn. (Yakugaku Zasshi) **1933**, *53*, 593.

⁽⁸⁾ Huneck, S.; Snatzke, G. Chem. Ber. 1965, 98, 120.

⁽⁹⁾ Because our preliminary work disclosed that a Mitsunobu reaction¹⁰ does not give methyl 3α -hydroxyurs-12-en-28-oate (methyl 3-epi-ursolate) from methyl 3β -hydroxyurs-12-en-28-oate (methyl usolate) due to steric hindrance of the C-3 β -hydroxyl group (Honda, T. Unpublished data), we excluded this reaction from our synthetic route.

in the presence of KH and 18-crown-6 in THF¹¹ yielded silvl ether 21 quantitatively. Debenzylation of 21 was achieved by hydrogenolysis in the presence of 10% Pd/C at atmospheric pressure to give alcohol 22 quantitatively. After several attempts using various oxidizing agents, we found that oxidation of 22 with RuO₄ (catalytic amount) in CH₃CN, CCl₄ and water¹² gives acid **23** and aldehyde 24 in 65% and 9% yield, respectively. Deprotection of 23 with 48% aqueous HF solution in CH₃CN¹³ afforded the target compound 7 in 99% yield, which was converted to the second target compound, dimethyl ester 9, with ethereal CH₂N₂ in 91% yield. The structures of both compounds 7 and 9 are fully characterized by ¹H and ¹³C NMR, low- and high-resolution mass spectra, IR spectra, and elemental analyses.¹⁴ Studies on the biological properties of both compounds are in progress.

Experimental Section

General Procedures. Elemental microanalysis was performed by Atlantic Microlab Inc. TLC was fulfilled with Merck precoated TLC plates silica gel 60 F_{254} . Flash column chromatography was done with Select Scientific silica gel (230–400 mesh). All experiments were performed under N_2 atmosphere unless otherwise stated.

Methyl 3-Acetoxyimino-23-acetoxyurs-12-en-28-oate (13). To a solution of methyl 3-hydroxyiminours-12-en-28-oate (10)⁵ (2.00 g, 4.1 mmol) in AcOH (220 mL) were added NaOAc (0.37 g, 4.5 mmol) and Na₂PdCl₄ (1.34 g, 4.6 mmol). The solution was stirred for 72 h, and then ice water (300 mL) was added to give a yellow precipitate. The precipitate was filtered and dried in vacuo at 60 °C for 24 h to give palladium complex 11 (2.53 g, 98%), which was used for the next reaction without further purification. To a solution of 11 in dry CH₂Cl₂ (180 mL) were added DMAP (10 mg), Et₃N (0.82 mL), and Ac₂O (0.6 mL). The mixture was stirred at room temperature for 45 min. It was washed with water (twice), dried over MgSO₄, filtered, and evaporated in vacuo to afford 12 as an oil. A solution of 12 and pyridine (0.3 mL) in THF (150 mL) was stirred at room temperature for 15 min. To the solution was added a solution of Pb(OAc)₄ (1.85 g, 4.2 mmol) in AcOH (62 mL) in a dry iceacetone bath. The solution was stirred at room temperature for 16 h. To remove remaining Pd salts, a solution of NaBH₄ (164 mg) in 1 N aqueous NaOH solution (60 mL) was added to the reaction mixture. The mixture was stirred for 10 min. After the mixture was filtered, the filtrate was diluted with CH₂Cl₂ (300 mL), which was washed with saturated aqueous NaHCO₃ solution (until the AcOH was completely removed), dried over MgSO₄, filtered, and evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes-EtOAc (2:1)] to give 13 as an amorphous solid (1.92 g, 81% from 11): TLC [hexanes/EtOAc (2:1)] \hat{R}_f 0.68; IR (KBr) 2976, 2932, 1769, 1736 cm⁻¹; ¹H NMR (CDCl₃) δ 5.27 (1H, t, J = 3.5 Hz), 4.19 (1H, d, J = 10.6 Hz), 4.13 (1H, d, J = 10.6 Hz), 3.60 (3H, s), 2.75 (1H, m), 2.53 (1H, m), 2.24 (1H, d, J = 11.0 Hz), 2.17, 2.05, 1.17, 1.07, 0.98 (each 3H, s), 0.94 (3H, d, J = 6.0 Hz), 0.85 $(3H, d, J = 6.5 \text{ Hz}), 0.78 (3H, s); {}^{13}\text{C NMR} (\text{CDCl}_3) \delta 178.2, 171.1,$ 170.7, 169.9, 138.5, 125.5, 68.5, 53.2, 51.7, 48.6, 48.3, 46.8, 44.0, 42.3, 39.6, 39.2, 39.0, 37.3, 37.1, 36.8, 36.6, 32.4, 30.8, 28.1, 24.4, 23.7, 23.6, 21.3, 21.1, 20.5, 20.2, 19.5, 17.2, 17.1, 15.6; CIMS m/z 584 [M + H]⁺; HRCIMS calcd for C₃₅H₅₃NO₆+H 584.3951, found 584.3949. Anal. Calcd for C35H53NO6: C, 72.01; H, 9.15; N, 2.40. Found: C, 71.75; H, 9.27; N, 2.22.

Methyl 23-Hydroxy-3-hydroxyiminours-12-en-28-oate (14). A solution of 13 (1.92 g, 3.3 mmol) and Na₂CO₃ (1.23 g, 14.8 mmol) in MeOH (185 mL) was stirred at room temperature for 16 h. After removal of MeOH in vacuo, the resultant colorless solid was dissolved in Et₂O (50 mL) and 1 N aqueous HCl solution (50 mL). The organic layer was washed with saturated aqueous NaHCO₃ solution (three times), dried over MgSO₄, filtered, and evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes-EtOAc (2: 1)] to give 14 as an amorphous solid (1.61 g, 98%): TLC [hexanes/EtOAc (2:1)] Rf 0.34; IR (KBr) 3392, 2971, 2907, 1725 cm⁻¹; ¹H NMR (CDCl₃) δ 5.26 (1H, t, J = 3.5 Hz), 3.63 (1H, d, J= 11.5 Hz), 3.62 (3H, s), 3.52 (1H, d, J = 11.5 Hz), 3.13 (1H, m), 2.24 (1H, d, J = 11.0 Hz), 1.08 (6H, s), 1.05 (3H, s), 0.94, 0.86 (each 3H, d, J = 6.5 Hz), 0.79 (3H, s); ¹³C NMR (CDCl₃) δ 178.3, 167.0, 138.5, 125.5, 67.8, 53.1, 51.7, 50.0, 48.3, 47.1, 45.0, 42.3, 39.7, 39.2, 39.1, 38.2, 37.0, 36.8, 32.7, 30.8, 28.2, 24.4, 23.8, 23.6, 21.4, 19.1, 18.8, 17.7, 17.3, 15.5; CIMS m/z 500 [M + H]⁺; HRCIMS calcd for $C_{31}H_{49}NO_4+H$ 500.3740, found 500.3740. Anal. Calcd for C₃₁H₄₉NO₄: C, 74.51; H, 9.88; N, 2.80. Found: C, 74.23; H, 9.79; N, 2.85.

Methyl 23-Hydroxy-3-oxours-12-en-28-oate (15). To a buffered solution of TiCl₃ (1.31 mL of 20% aqueous HCl solution containing 19% TiCl₃) and NH₄OAc (750 mg, 9.7 mmol) in water (28 mL) was added a solution of 14 (180 mg, 0.36 mmol) in THF (26.5 mL). The mixture was stirred at room temperature for 4 h. It was extracted with Et₂O (three times). The extract was washed with saturated aqueous NaHCO₃ solution (three times), dried over MgSO₄, filtered, and evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes-EtOAc (2:1)] to give 15 as an amorphous solid (154 mg, 88%): TLC [hexanes/EtOAc (2:1)] $R_f 0.43$; $[\alpha]^{24}_{D} + 67^{\circ}$ (c 0.39, CHCl₃); IR (KBr) 3478, 2950, 2917, 1725, 1676 cm⁻¹; ¹H NMR (CDCl₃) δ 5.27 (1H, t, J = 3.8 Hz), 3.65 (1H, d, J = 11.5 Hz), 3.62 (3H, s), 3.43 (1H, d, J = 11.5 Hz), 2.63 (1H, m), 2.28 (1H, m), 2.25 (1H, d, J = 12.5 Hz), 1.15, 1.10, 1.03 (each 3H, s), 0.95 (3H, d, J = 6.0 Hz), 0.87 (3H, d, J = 7.0 Hz), 0.82 (3H, s); ¹³C NMR (CDCl₃) & 219.4, 178.3, 138.7, 125.4, 67.2, 53.1, 52.6, 51.7, 49.4, 48.3, 46.9, 42.4, 39.7, 39.3, 39.2, 39.1, 36.8, 36.7, 35.5, 32.6, 30.9, 28.3, 24.4, 23.8, 23.7, 21.4, 19.4, 17.29, 17.25, 17.1, 15.6; CIMS m/z 485 [M + H]⁺; HRCIMS calcd for C₃₁H₄₈O₄+H 485.3631, found 485.3629. Anal. Calcd for $C_{31}H_{48}O_4 \cdot H_2O$: C, 74.06; H, 10.02. Found: C, 73.69; H, 9.69.

Methyl 3,3-Ethylenedioxy-23-hydroxyurs-12-en-28-oate (16). A mixture of 15 (130 mg, 0.27 mmol), ethylene glycol (1.3 mL, 23 mmol), and PPTS (24 mg, 0.095 mmol) in benzene (13 mL) was heated under reflux with a Dean-Stark apparatus filled with molecular sieves for 20 h. It was diluted with a mixture of Et₂O and CH₂Cl₂ (2:1) (20 mL). It was washed with water (four times), dried over MgSO₄, filtered, and evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes-EtOAc (5:1)] to give 16 as an amorphous solid (140 mg, 99%): TLC [hexanes/EtOAc (5:1)] $R_f 0.26$; IR (KBr) 3511, 2960, 2906, 1725 cm⁻¹; ¹H NMR (CDCl₃) δ 5.22 (1H, t, J = 3.3 Hz), 4.00 (2H, m), 3.93 (2H, m), 3.63 (1H, d, J = 11.5 Hz), 3.57 (3H, s), 3.15 (1H, d, J = 11.5 Hz), 2.20 (1H, d, J = 11.0 Hz), 1.08, 0.97 (each 3H, s), 0.92 (3H, d, J = 6.0 Hz), 0.83 (3H, d, J = 6.5 Hz), 0.73 (6H, s); ¹³C NMR (CDCl₃) δ 178.0, 138.3, 125.4, 115.4, 65.7, 64.6, 63.9, 53.1, 51.6, 48.3, 47.7, 46.2, 44.5, 42.3, 39.7, 39.2, 39.1, 37.0, 36.8, 36.6, 32.7, 30.9, 28.2, 26.5, 24.4, 23.9, 23.5, 21.4, 18.4, 17.2, 17.1, 16.9, 15.8; CIMS m/z 529 $[M\ +\ H]^+;\ HRCIMS\ calcd\ for\ C_{33}H_{52}O_5+H\ 529.3893,\ found$ 529.3894. Anal. Calcd for C₃₃H₅₂O₅: C, 74.96; H, 9.91. Found: C, 74.91; H, 10.27.

Methyl 23-Benzyloxy-3,3-ethylenedioxyurs-12-en-28oate (17). A mixture of 16 (140 mg, 0.27 mmol), benzyl bromide (0.2 mL, 1.6 mmol), KH (35% in mineral oil) (0.2 mL), and *n*-Bu₄-NI (10 mg, 0.027 mmol) in THF (3 mL) was heated under reflux for 28 h. After it was cooled in an ice bath, *i*-PrOH (1 mL) was carefully added to decompose unreacted KH. The mixture was diluted with a mixture of Et₂O and CH₂Cl₂ (2:1) (20 mL). It was washed with water (three times), dried over MgSO₄, filtered, and evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes–EtOAc (5:1)] to give 17 as an amorphous solid (155 mg, 94%): TLC [hexanes/EtOAc (5: 1)] R_f 0.61; IR (KBr) 2955, 2860, 1719 cm⁻¹; ¹H NMR (CDCl₃) δ 7.35 (5H, m), 5.26 (1H, t, J = 3.5 Hz), 4.51 (1H, d, J = 12.5 Hz),

^{(10) (}a) Mitsunobu, O. *Synthesis* **1981**, 1. (b) Hughes, D. L. In *Organic Reactions*, Vol. 42; Paquette, L. A. et al., Eds.; John Wiley & Sons: New York, 1992; pp 335–656.

⁽¹¹⁾ Braish, T. F.; Fuchs, P. L. *Synth. Commum.* **1986**, *16*, 111. (12) Carlsen, P. J.; Katsuki, T.; Martin, V. S.; Sharpless K. B. J.

⁽¹²⁾ Carlsen, P. J.; Katsuki, T.; Martin, V. S.; Sharpless K. B. . Org. Chem. **1981**, 46, 3936.

⁽¹³⁾ Newton, R. F.; Reynolds, D. P.; Finch, M. A. W.; Kelly, D. R.; Roberts, S. M. *Tetrahedron Lett.* **1979**, 3981.

⁽¹⁴⁾ Unfortunately, because we were unable to obtain authentic samples and spectral data from the authors,³ we could not compare our synthetic analogues with the natural products directly.

4.47 (1H, d, J = 12.5 Hz), 3.92 (4H, m), 3.62 (3H, s), 3.37 (1H, d, J = 9.5 Hz), 3.13 (1H, d, J = 9.5 Hz), 2.24 (1H, d, J = 11.0 Hz), 1.15, 1.01 (each 3H, s), 0.98 (3H, d, J = 6.0 Hz), 0.92 (3H, s), 0.90 (3H, d, J = 6.5 Hz), 0.78 (3H, s); ¹³C NMR (CDCl₃) δ 178.3, 139.1, 138.4, 128.3, 127.8, 127.4, 125.6, 113.3, 74.1, 73.6, 64.8, 64.6, 53.1, 51.6, 49.7, 48.2, 47.4, 45.6, 42.3, 39.7, 39.2, 39.0, 36.9, 36.8, 32.7, 30.9, 28.2, 27.4, 24.4, 24.1, 23.5, 21.4, 19.0, 17.2, 17.1, 17.0, 15.8; CIMS m/z 619 [M + H]⁺; HRCIMS calcd for C₄₀H₅₈O₅+H 619.4363, found 619.4354. Anal. Calcd for C₄₀H₅₈O₅: C, 77.63; H, 9.45. Found: C, 77.57; H, 9.33.

Methyl 23-Benzyloxy-3-oxours-12-en-28-oate (18). A mixture of 17 (1.17 g, 18.9 mmol), p-TsOH (50 mg, 0.26 mmol), and PPTS (50 mg, 0.20 mmol) in acetone (350 mL) was stirred at room temperature for 48 h. After removal of acetone, the resultant residue was dissolved in CH₂Cl₂ (25 mL). The solution was washed with water (three times), dried over MgSO₄, filtered, and evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes-EtOAc (5:1)] to give 18 as an amorphous solid (986 mg, 91%): TLC [hexanes/EtOAc (5:1)] $R_f 0.54$; IR (KBr) 2960, 2863, 1720, 1698 cm⁻¹; ¹H NMR (CDCl₃) δ 7.31 (5H, m), 5.30 (1H, t, J = 3.0 Hz), 4.55 (1H, d, J= 12.5 Hz), 4.38 (1H, d, J = 12.5 Hz), 3.62 (3H, s), 3.53 (1H, d, J = 8.5 Hz), 3.23 (1H, d, J = 8.5 Hz), 2.47 (2H, dd, J = 5.5, 9.0 Hz), 2.27 (1H, d, J = 11.0 Hz), 1.14, 1.00 (each 3H, s), 0.97 (3H, d, J = 6.0 Hz), 0.93 (3H,s), 0.89 (3H, d, J = 6.0 Hz), 0.82 (3H, s); ¹³C NMR (CDCl₃) δ 217.4, 178.8, 139.3, 139.0, 129.0, 128.2, 128.1, 126.3, 75.9, 73.8, 53.8, 52.2, 51.9, 48.9, 47.9, 46.8, 43.0, 40.2, 39.8, 39.6, 38.2, 37.4, 36.9, 36.4, 32.9, 31.4, 28.8, 25.0, 24.3, 24.2, 21.9, 20.3, 18.7, 17.8, 17.7, 16.0; CIMS m/z 575 [M + H]+; HRCIMS calcd for C₃₈H₅₄O₄+H 575.4100, found 575.4101. Anal. Calcd for C₃₈H₅₄O₄: C, 79.40; H, 9.47. Found: C, 79.17; H, 9.36.

Methyl 23-Benzyloxy-3α-hydroxyurs-12-en-28-oate (19) and Methyl 23-Benzyloxy-3β-hydroxyurs-12-en-28-oate (20). A mixture of 18 (193 mg, 0.34 mmol) and Al(*i*-PrO)₃ (206 mg, 1.0 mmol) in i-PrOH (4 mL) was heated under reflux for 10 h. After the mixture was diluted with a mixture of Et₂O and CH₂-Cl₂ (2:1) (20 mL), it was washed with 5% aqueous HCl solution (twice) and saturated aqueous NaHCO₃ solution (twice), dried over MgSO₄, filtered, and evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes-EtOAc (5:1)] to give 19 as an amorphous solid (139 mg, 72%) and 20 as an amorphous solid (53 mg, 28%). 19: TLC [hexanes/EtOAc (5:1)] R_f 0.49; IR (KBr) 3450, 2917, 2863, 1720 cm⁻¹; ¹H NMR (CDCl₃) δ 7.37 (5H, m), 5.30 (1H, t, J = 3.5 Hz), 4.61 (1H, d, J = 11.8 Hz), 4.48 (1H, d, J = 11.8 Hz), 3.70 (1H, t, J = 2.3 Hz), 3.65 (3H, s), 3.50 (1H, d, J = 9.5 Hz), 3.29 (1H, d, J = 9.5 Hz), 2.28 (1H, d, J = 11.0 Hz), 1.16 (3H, s), 0.99 (3H, d, J = 8.0 Hz), 0.98 (3H,s), 0.90 (3H, d, J = 7.0 Hz), 0.79 (6H, s); ¹³C NMR (CDCl₃) δ 178.2, 138.2, 137.9, 128.6, 128.0, 127.7, 125.8, 78.5, 75.3, 73.6, 53.1, 51.6, 48.3, 47.5, 43.4, 42.2, 40.8, 39.7, 39.2, 39.0, 37.0, 36.8, 33.1, 32.7, 30.9, 28.2, 25.0, 24.4, 23.8, 23.3, 21.4, 18.4, 18.1, 17.2, 17.1, 15.9; CIMS m/z 577 [M + H]+; HRCIMS calcd for C₃₈H₅₆O₄+H 577.4257, found 577.4259. Anal. Calcd for C₃₈H₅₆O₄·3/4H₂O: C, 77.31; H, 9.82. Found: C, 77.10; H, 9.56. 20: TLC [hexanes/EtOAc (5:1)] Rf 0.32; IR (KBr) 3522, 2928, 2863, 1725 cm $^{-1};$ 1H NMR (CDCl_3) δ 7.35 (5H, m), 5.26 (1H, t, J = 3.5 Hz), 4.56 (1H, d, J = 12.0 Hz), 4.50 (1H, d, J = 12.0 Hz), 3.64 (1H, dd, J = 4.5, 10.5 Hz), 3.62 (3H, s), 3.57 (1H, d, J = 8.5 Hz), 3.26 (1H, d, J = 8.5 Hz), 2.25 (1H, d, J = 11.5 Hz), 1.09, 0.97 (each 3H, s), 0.96 (3H, d, J = 6.0 Hz), 0.94 (3H, s), 0.87 (3H, d, J = 6.5 Hz), 0.75 (3H, s); ¹³C NMR (CDCl₃) δ 178.3, 138.3, 128.7, 127.9, 127.7, 125.8, 81.0, 76.8, 73.8, 53.1, 51.7, 50.6, 48.3, 47.8, 42.2, 42.0, 39.7, 39.3, 39.1, 38.4, 37.0, 36.8, 32.9, 32.1, 30.9, 28.2, 26.2, 24.4, 23.8, 23.5, 21.4, 18.9, 17.2, 17.1, 15.9, 14.3, 12.4; CIMS m/z 575 [M - H]+; HRCIMS calcd for C38H56O4-H 575.4100, found 575.4101. Anal. Calcd for C38H56O4. 1/2H2O: C, 77.90; H, 9.81. Found: C, 78.13; H, 9.93.

Methyl 23-Benzyloxy-3α-(*tert***-butyldimethyl)silyloxyurs-12-en-28-oate (21).** A mixture of **19** (559 mg, 0.97 mmol), *tert*butylchlorodimethylsilane (603 mg, 4.0 mmol), KH (35% in mineral oil, 3 mL), whose oil was removed by washing with hexanes, and 18-crown-6 (10 mg, 0.038 mmol) in THF (30 mL) was heated under reflux for 3 h. To the mixture was added *i*-PrOH (2 mL) carefully to decompose unreacted KH in an ice bath. After the mixture was diluted with a mixture of Et₂O and CH₂Cl₂ (2:1) (50 mL), it was washed with 5% aqueous HCl solution (twice) and saturated aqueous NaHCO₃ solution (twice), dried over MgSO₄, filtered, and evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes-EtOAc (10:1)] to give 21 as an amorphous solid (669 mg, 100%): TLC [hexanes/EtOAc (10:1)] Rf 0.57; IR (KBr) 2954, 2921, 1730 cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (5H, m), 5.28 (1H, t, J = 3.3 Hz), 4.54 (1H, d, J = 12.3 Hz), 4.36 (1H, d, J = 12.3 Hz), 3.77 (1H, s), 3.62 (3H, s), 3.38 (1H, d, J = 8.0 Hz), 3.21 (1H, d, J = 8.0 Hz), 2.25 (1H, d, J = 11.5 Hz), 1.10 (3H, s), 0.97 (3H, d, J = 4.5 Hz), 0.96 (3H, s), 0.92 (9H, s), 0.90 (3H, d, J = 4.5 Hz), 0.89, 0.75, 0.04, -0.01 (each 3H, s); ¹³C NMR (CDCl₃) δ 178.3, $139.4,\ 138.3,\ 128.3,\ 127.5,\ 127.3,\ 126.0,\ 77.9,\ 73.2,\ 71.9,\ 53.1,$ 51.7, 48.3, 47.7, 46.5, 42.1, 42.0, 39.6, 39.3, 39.1, 37.1, 36.9, 33.3, 33.1, 30.9, 28.2, 26.3, 25.2, 24.5, 23.6, 23.5, 21.4, 18.6, 18.5, 17.44, 17.38, 17.1, 16.1, -3.9, -4.9; CIMS *m*/*z* 691 [M + H]⁺; HRCIMS calcd for C44H70O4Si+H 691.5122, found 691.5121. Anal. Calcd for C₄₄H₇₀O₄Si·1/3H₂O: C, 75.81; H, 10.22. Found: C, 75.89; H, 10.38

Methyl 3α-(tert-Butyldimethyl)silyloxy-23-hydroxyurs-12-en-28-oate (22). A mixture of 21 (669 mg, 0.97 mmol) and 10% Pd/C (a catalytic amount) in THF (20 mL) was stirred at room temperature under H_2 at atmospheric pressure for 3 h. After insoluble matter was removed through Celite, the filtrate was evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes-EtOAc (5:1)] to give 22 as an amorphous solid (581 mg, 100%): TLC [hexanes/EtOAc (5:1)] R_f 0.60; IR (KBr) 3545, 2951, 2855, 1718 cm⁻¹; ¹H NMR (CDCl₃) δ 5.26 (1H, t, J = 3.5 Hz), 3.62 (1H, t, J = 3.0 Hz), 3.61 (3H, s), 3.42 (1H, d, J = 11.8 Hz), 3.27 (1H, d, J = 11.8 Hz), 2.24 (1H, d, J = 11.0 Hz), 1.11, 0.95 (each 3H, s), 0.94 (3H, d, J = 6.3 Hz), 0.93 (9H, s), 0.89 (3H, d, *J* = 6.5 Hz), 0.76, 0.67, 0.14, 0.13 (each 3H, s); ¹³C NMR (CDCl₃) δ 178.3, 138.5, 125.8, 78.9, 71.4, 53.1, 51.6, 48.3, 47.7, 42.9, 42.2, 41.0, 39.8, 39.2, 39.1, 36.9, 36.7, 33.4, 32.7, 31.8, 30.9, 28.2, 26.2, 26.0, 24.5, 23.8, 23.5, 22.9, 21.4, 18.5, 18.2, 17.4, 17.2, 15.9, 14.3, -3.9, -4.7; CIMS m/z601 $[M + H]^+$; HRCIMS calcd for C₃₇H₆₄O₄Si+H 601.4652, found 601.4654. Anal. Calcd for C37H64O4Si: C, 73.95; H, 10.73. Found: C, 73.83; H, 10.74.

3α-(tert-Butyldimethyl)silyloxyurs-12-ene-23,28-dioic Acid 28-Methyl Ester (23) and Methyl 3a-(tert-Butyldimethyl)silyloxy-23-oxours-12-en-28-oate (24). A mixture of 22 (45 mg, 0.074 mmol), RuO2 · xH2O (25 mg), and NaIO4 (62 mg, 0.29 mmol) in CCl₄ (0.5 mL), CH₃CN (0.5 mL), and water (0.75 mL) was stirred at room temperature for 5.5 h. To the mixture was added CH₂Cl₂ (8 mL). The aqueous layer was extracted with CH₂Cl₂ (10 mL) (three times). The combined organic layers were dried over MgSO₄, filtered, and evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes-EtOAc (5:1)] to give 23 as an amorphous solid (30 mg, 65%) and 24 as an amorphous solid (4 mg, 9%). 23: TLC [hexanes/ EtOAc (5:1)] *R*_f 0.38; IR (KBr) 3314, 2943, 2856, 1725, 1698 cm⁻¹; ¹H NMR (CDCl₃) δ 5.27 (1H, t, J = 3.5 Hz), 3.88 (1H, s), 3.62 (3H, s), 2.25 (1H, d, J = 11.5 Hz), 1.17, 0.97 (each 3H, s), 0.96, 0.91 (each 3H, d, J = 6.5 Hz), 0.90 (3H, s), 0.88 (9H, s), 0.77, 0.06, 0.01 (each 3H, s); ¹³C NMR (CDCl₃) δ 182.1, 178.3, 138.7, $125.6,\ 74.5,\ 53.1,\ 52.2,\ 51.7,\ 48.3,\ 47.8,\ 43.9,\ 42.3,\ 40.2,\ 39.2,$ 39.1, 36.9, 36.8, 32.8, 32.5, 31.8, 30.8, 28.2, 26.0, 25.2, 24.5, 23.9, 23.5, 22.9, 21.4, 21.2, 18.2, 17.42, 17.38, 16.1, 14.4, -3.9, -5.3; CIMS m/z 613 [M - H]⁺; HRCIMS calcd for C₃₇H₆₂O₅Si-H 613.4288, found 613.4288. Anal. Calcd for C₃₇H₆₂O₅Si: C, 72.26; H, 10.16. Found: C, 71.98; H, 10.27. 24: TLC [hexanes/EtOAc (5:1)] *R*_f 0.59; IR (KBr) 2954, 2856, 1723 cm⁻¹; ¹H NMR (CDCl₃) δ 9.49 (1H, s), 5.27 (1H, t, J = 3.5 Hz), 3.72 (1H, s), 3.60 (3H, s), 2.24 (1H, d, J = 11.5 Hz), 1.14 (3H, s), 0.95 (6H, s), 0.94 (3H, d, J = 6.0 Hz), 0.89 (3H, d, J = 6.5 Hz), 0.87 (9H, s), 0.76, 0.02, -0.05 (each 3H, s); ¹³C NMR (CDCl₃) δ 210.1, 178.2, 138.5, 125.6, 74.5, 53.1, 52.3, 51.6, 48.3, 47.5, 43.8, 42.2, 40.3, 39.2, 39.0, 36.8, 36.3, 32.9, 32.8, 30.8, 28.1, 26.0, 25.8, 24.4, 23.7, 23.4, 21.4, 20.7, 18.2, 17.3, 17.2, 15.8, 14.5, -4.1, -5.2; CIMS m/z 599 [M + H]+; HRCIMS calcd for C₃₇H₆₂O₄Si+H 599.4496, found 599.4497.

 3α -Hydroxyurs-12-ene-23,28-dioic Acid 28-Methyl Ester (7). A solution of 23 (56 mg, 0.091 mmol) in a mixture of 48% aqueous HF solution and CH₃CN (1:9) (3 mL) was stirred at room temperature for 16 h. After the mixture was diluted with a mixture of Et₂O and CH₂Cl₂ (2:1) (10 mL), it was washed with water (four times) and saturated aqueous NaHCO₃ solution (twice), dried over MgSO₄, filtered, and evaporated in vacuo to give 7 as an amorphous solid (45 mg, 99%): TLC [hexanes/EtOAc (2:1)] $R_f 0.09$; $[\alpha]^{24}_D + 35^\circ$ (*c* 0.27, acetone); IR (KBr) 3448, 2931, 2861, 1719 cm⁻¹; ¹H NMR (acetone- d_6) δ 5.20 (1H, t, J = 3.5 Hz), 3.78 (1H, t, J = 2.5 Hz), 3.54 (3H, s), 2.21 (1H, d, J = 11.0 Hz), 1.15, 1.12, 0.97 (each 3H, s), 0.92 (3H, d, J = 5.5 Hz), 0.86 (3H, d, J = 6.5 Hz), 0.75 (3H, s); ¹³C NMR (acetone- d_6) δ 178.6, 178.3, 139.8, 126.8, 73.5, 54.4, 52.14, 52.06, 49.2, 48.9, 45.4, 43.4, 41.3, 40.4, 40.2, 37.94, 37.91, 34.0, 33.4, 31.8, 29.2, 26.3, 25.5, 24.7, 24.4, 22.2, 22.0, 18.4, 18.2, 18.1, 16.6; CIMS *m*/*z* 501 [M + H]⁺; HRCIMS calcd for C₃₁H₄₈O₅+H 501.3580, found 501.3582. Anal. Calcd for C₃₁H₄₈O₅+1/3H₂O: C, 73.48; H, 9.68. Found: C, 73.50; H, 9.75.

Dimethyl 3α-Hydroxyurs-12-ene-23,28-dioate (9). To a solution of **7** (42 mg, 0.084 mmol) in THF (5 mL) was added ethereal CH₂N₂ (10 mL). The solution was stirred at room temperature for 1 h and then evaporated in vacuo to give a solid. The solid was purified by flash column chromatography [hexanes–EtOAc (2:1)] to give **9** as an amorphous solid (39 mg, 91%): TLC [hexanes/EtOAc (2:1)] R_f 0.52; [α]²⁴_D +41° (*c* 0.38, CHCl₃); IR (KBr) 3519, 2979, 2948, 2924, 2871, 1726 cm⁻¹; ¹H NMR (CDCl₃) δ 5.25 (1H, t, J = 3.5 Hz), 3.78 (1H, t, J = 2.5

Hz), 3.70 (3H, s), 3.60 (3H, s), 2.23 (1H, d, J=11.5 Hz), 1.19, 1.13, 0.97 (each 3H, s), 0.94 (3H, d, J=6.0 Hz), 0.86 (3H, d, J=6.5 Hz), 0.75 (3H, s); ^{13}C NMR (CDCl₃) δ 178.34, 178.30, 138.4, 125.4, 72.7, 53.1, 52.2, 51.7, 51.6, 48.3, 47.8, 45.1, 42.3, 40.1, 39.2, 39.1, 36.9, 36.8, 32.8, 32.3, 30.8, 28.1, 24.9, 24.4, 24.0, 23.3, 21.5, 21.4, 17.24, 17.21, 17.19, 16.0; CIMS m/z 515 [M + H]+; HRCIMS calcd for $C_{32}H_{50}O_5$ +H 515.3737, found 515.3735. Anal. Calcd for $C_{32}H_{50}O_5$: C, 74.67; H, 9.79. Found: C, 74.81; H, 9.87.

Acknowledgment. This investigation was supported by funds from the Norris Cotton Cancer Center. We thank Dr. Steven Mullen (University of Illinois) for the mass spectra and Professor David A. Evans, Mr. Brett D. Allison (Harvard University), and Mr. Frank G. Favaloro, Jr. (Dartmouth College) for the optical rotation measurements.

JO0008688