Note

Synthesis of trisaccharides related to an arabinoglucan*

TADAMI FUJIWARA, TADAHIRO TAKEDA, AND YUKIO OGIHARA Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467 (Japan) (Received December 5th, 1984; accepted for publication, January 30th, 1985)

We have previously reported an investigation of the structure of the watersoluble polysaccharide, designated as GIa, which was isolated from the bark of *Melia azadirachta* (Meliaceae)^{1,2}. GIa is a $(1\rightarrow 4)$ - α -D-glucan having one $(1\rightarrow 6)$ - α -Larabinofuranosyl group for every five D-glucose residues. GIa showed a strong antitumor effect against Sarcoma-180. We report herein the synthesis, as model compounds, of trisaccharides that contain the basic structural features of the arabinoglucan.

The synthesis of trisaccharide $\mathbf{8}$, which corresponds to the partial structure unit of GIa (1), was started by condensation of methyl 2,3-di-O-acetyl-4-O-(2,3,6tri-O-acetyl- α -D-glucopyranosyl)- β -D-glucopyranoside (3) [which had been prepared from methyl 2,3,2',3',4'-penta-O-acetyl-6,6'-di-O-trityl- β -D-maltoside (2)] with 2,3,5-tri-O-benzoyl- α -L-arabinofuranosyl bromide^{3,4} (6); the latter compound had been prepared from methyl 2,3,5-tri-O-benzoyl- α -L-arabinofuranoside and 2 from methyl β -D-maltoside by direct tritylation and subsequent acetylation according to the method of Koizumi and Utamura⁵. The α -L-linked trisaccharide, methyl 2,3-di-O-acetyl-4-O-(2,3,6-tri-O-acetyl-a-D-glucopyranosyl)-6-O-(2,3,5-tri-O-ben $zoyl-\alpha-L$ -arabinofuranosyl)- β -D-glucopyranoside (7) was obtained in 62% yield from **3**. Its 1 H-n.m.r. spectrum showed signals characteristic for three benzoyl, one methoxyl, and five acetyl groups. Compound 7 was O-deacylated with triethylamine to give methyl $O - \alpha$ -D-glucopyranosyl- $(1 \rightarrow 4) - O - [(\alpha - L - arabinofurano$ syl)- $(1\rightarrow 6)$]- β -D-glucopyranoside (8), the ¹H-n.m.r. spectrum of which indicated three anomeric protons and the ¹³C-n.m.r. spectrum (Table I) three anomeric carbon atoms. Introduction of the α -L-arabinofuranosyl group at O-6 deshielded C-6 by 5.8 p.p.m. as compared with methyl β -D-glucopyranoside⁶ (δ 61.9).

Similarly, methyl 2,3,6-tri-O-acetyl-4-O-(2,3-di-O-acetyl- α -D-glucopyranosyl)- β -D-glucopyranoside (5), which was prepared from 4 according to the method of Koizumi and Utamura⁵, and bromide 6 in nitromethane containing mercuric cyanide gave, after column chromatography, in 62% yield (based on 5), a trisaccharide containing a (1 \rightarrow 6)-linked α -L-arabinofuranosyl residue, methyl O-

^{*}Studies on the Structure of Polysaccharides from the Bark of Melia azadirachta. Part 4.

TABLE I

Carbon atom	Compound						
	3	5	6	7	8	9	10
C-1	101.1	101.5		101.1	104.4	101.5	104.3
2	72.2	72.3		72.1	74.1	70.9	74.0
3	72.7	72.3		72.6	77.2	70.9	77.4
4	75.5	75.6		75.2	78.9	74.6	78.7
5	72.3	72.8		73.7	74.6	72.3	74.6
6	62.9	61.2		65.1	67.7	63.5	62.2
C-1'	95.8	95.3		95.6	101.3	98.1	101.0
2'	71.1	69.5		70.9	73.1	69.8	72.9
3'	71.7	70.2		71.7	74.1	70.3	74.0
4'	68.7	68.9		68.7	70.4	69.1	70.7
5'	70.2	70.6		70.6	73.9	69.5	75.7
6'	62.6	60.3		63.0	61.6	66.0	68.0
C-1″			88.6	105.3	109.2	106.3	109.1
2"			84.7	81.1	82.3	81.3	82.3
3″			76.7	77.6	77.9	77.9	77.6
4″			85.7	81.8	85.1	82.2	84.8
5″			62.6	63.7	62.4	63.7	62.3
OMe	56.9	57.1		57.9	58.5	57.0	58.4

"For solutions of compound 3, 5, 6, 7, and 9 in $CDCl_3$, and for solutions of 8 and 10 in D_2O .

 $(2,3,5-\text{tri-}O-\text{benzoyl}-\alpha-L-\text{arabinofuranosyl})-(1\rightarrow 6)-O-(2,3-\text{di-}O-\text{acetyl}-\alpha-D-\text{gluco-pyranosyl}-(1\rightarrow 4)-2,3,6-\text{tri-}O-\text{acetyl}-\beta-D-\text{glucopyranoside}$ (9). Removal of the blocking groups with 50% methanolic triethylamine afforded methyl $O-\alpha-L$ -arabinofuranosyl- $(1\rightarrow 6)-O-\alpha-D$ -glucopyranosyl- $(1\rightarrow 4)-\beta$ -D-glucopyranoside (10). The α -L configuration for the newly formed glycosidic bond in 10 was evident from the ¹³C-n.m.r. spectrum⁴ (C-1" at δ 109.1). No anomeric impurities were observed by ¹H- and ¹³C-n.m.r. spectrometry in all the compounds described. The ¹³C shifts of the trisaccharide derivatives and related compounds are listed in Table I.

EXPERIMENTAL

General methods. — Melting points were determined with a Yanagimoto microapparatus and are uncorrected. ¹H-N.m.r. spectra were recorded with a JNM MH-100 spectrometer, and ¹³C-n.m.r. spectra with a FX-100 instrument, tetramethylsilane being the internal standard in both cases. Optical rotations were measured with a JASCO DIP-4 digital polarimeter. Thin-layer chromatography was conducted on precoated Silica gel plates (Merck GF-254), and the detection of compounds was achieved by quenching of u.v. fluorescence and with 10% H_2SO_4 solution. Column chromatography was carried out on silica gel (Merck Kieselgel 60).

Materials. — 2,3,5-Tri-O-benzoyl- α -L-arabinofuranosyl bromide (6) { $[\alpha]_D^{18}$ –47.5° (c 0.57, chloroform)} was prepared from methyl 2,3,5-tri-O-benzoyl- α -L-arabinofuranoside according to the method of Fletcher³. Methyl 2,3,2',3',4'-penta-O-acetyl-6,6'-di-O-trityl- β -D-maltoside (2), methyl 2,3,6,2',3'-penta-O-acetyl-4',6'-O-benzylidene- β -D-maltoside (4), and methyl 2,3,6,2',3'-penta-O-acetyl- β -D-maltoside (5) were obtained by the procedure of Koizumi and Utamura⁵.

Methyl 2,3-di-O-acetyl-4-O-(2,3,6-tri-O-acetyl-α-D-glucopyranosyl)-β-Dglucopyranoside (3). — A solution of 2 (1 g) in 80% acetic acid (20 mL) was stirred at 60° for 8 h. It was then poured into ice-water and extracted with chloroform. Work-up in the usual manner gave a solid (500 mg, 92.8% yield), m.p. 86–88° (ethanol), $[\alpha]_{D}^{18}$ +31.1° (c 0.5, chloroform); ¹H-n.m.r. (CDCl₃): δ 3.53 (3 H, OMe), 2.21–1.96 (15 H, 5 OAc).

Anal. Calc. for C₂₃H₃₄O₁₆: C, 48.76; H, 6.05. Found: C, 48.82; H, 6.11.

Methyl 2,3-di-O-acetyl-4-O-(2,3,6-tri-O-acetyl- α -D-glucopyranosyl)-6-O-(2,3,5-tri-O-benzoyl- α -L-arabinofuranosyl)- β -D-glucopyranoside(7).—A solution of 2,3,5-tri-O-benzoyl- α -L-arabinofuranosyl bromide (6) (788 mg, 1.5 mmol) in nitromethane (10 mL) was added to a mixture of methyl 2,3,2',3',6'-penta-O-acetyl- β -D-maltoside (3) (566 mg, 1 mmol), Hg(CN)₂ (4.5 g), and molecular sieve 4A (1.5 g) in the same solvent (10 mL). After being stirred for 6 h at 60°, the mixture was cooled and washed successively with saturated aqueous NaHCO₃, saturated aqueous NaCl, and water, dried (Na₂SO₄), and evaporated to give a syrup that contained, as shown by t.l.c. in 4:1 (v/v) benzene-acetone, a major product (R_F 0.49) and a hydrolysis product of 6 (R_F 0.25). The residue was chromatographed on a column of silica gel. The product, eluted with 4:1 (v/v) benzene–acetone, crystallized from ethanol (862 mg, yield 62.2%), m.p. 86–87°, $[\alpha]_D^{22}$ +16.8° (c 1.0, chloroform); ¹H-n.m.r. (CDCl₃): δ 5.52 (s, 1 H, H-1″), 5.39 (d, 1 H, J 4 Hz, H-1′), 4.46 (d, 1 H, J 8 Hz, H-1), 3.41 (3 H, OMe), and 2.03–1.96 (15 H, 5 OAc).

Anal. Calc. for C₄₉H₅₄O₂₃: C, 58.22; H, 5.38. Found: C, 58.45; H, 5.43.

Methyl 6-O- α -L-arabinofuranosyl-4-O- α -D-glucopyranosyl- β -D-glucopyranoside (8). — Compound 7 (147 mg) was O-deacetylated and O-debenzoylated with triethylamine (0.5 mL) in 50% aqueous methanol (4 mL) and, after removal of the solvents, the residue crystallized from ethanol (64.3 mg, 90.5%), m.p. 102–104°, $[\alpha]_D^{2^2} + 5.1^\circ$ (c 1.0, water); t.l.c. (5:4:1, v/v, chloroform-methanol-water) R_F 0.33; ¹H-n.m.r. (D₂O): δ 5.35 (d, 1 H, J 4 Hz, H-1'), 5.11 (s, 1 H, H-1"), 4.40 (d, 1 H, J 8 Hz, H-1), and 3.57 (3 H, OMe).

Anal. Calc. for C₁₈H₃₂O₁₅: C, 44.26; H, 6.60. Found: C, 44.41; H, 6.66.

Methyl $O_{-(2,3,5-tri-O-benzoyl-\alpha-L-arabinofuranosyl)-(1\rightarrow 6)-O_{-(2,3-di-O-acetyl-\alpha-D-glucopyranosyl)-(1\rightarrow 4)-2,3,6-tri-O-acetyl-\beta-D-glucopyranoside (9). — Compound 5 (283 mg, 0.5 mmol) was condensed with 6 (525 mg, 1 mmol) as described for the synthesis of 7. The dried solution was evaporated to give a syrup, which was chromatographed on a column of silica gel with 4:1 (v/v) benzene-acetone as eluent. Compound 9 was obtained as a white powder (313 mg, 62%), m.p. 85–86°, <math>[\alpha]_D^{22}$ +20.1° (c 1.62, chloroform); t.l.c. (4:1, v/v, benzene-acetone) $R_F 0.49$; ¹H-n.m.r. (CDCl₃): δ 8.10–7.84 (m, 6 H, arom. H), 7.60–7.16 (m, 9 H, arom. H), 5.48 (s, 1 H, H-1"), 5.32 (d, 1 H, J 4 Hz, H-1'), 4.40 (d, 1 H, J 8 Hz, H-1), 3.38 (3 H, OMe), and 2.12–1.80 (15 H, 5 OAc).

Anal. Calc. for C₄₉H₅₄O₂₃: C, 58.22; H, 5.38. Found: C, 58.18; H, 5.43.

Methyl O- α -L-arabinofuranosyl- $(1\rightarrow 6)$ -O- α -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-glucopyranoside (10). — Compound 9 (150 mg) was O-deacylated with triethylamine (0.5 mL). The solution was evaporated to give a white powder (65.5 mg, 90.3%), $[\alpha]_D^{2^2}$ +4.0° (c 3.0, water); t.l.c. (5:4:1, v/v, chloroform-methanolwater) R_F 0.38; ¹H-n.m.r. (D₂O): δ 5.32 (d, 1 H, J 4 Hz, H-1'), 5.08 (s, 1 H, H-1''), 4.36 (d, 1 H, J 8 Hz, H-1), and 3.55 (3 H, OMe).

Anal. Calc. for C₁₈H₃₂O₁₅: C, 44.26; H, 6.60. Found: C, 44.36; H, 6.72.

ACKNOWLEDGMENTS

The authors thank Miss S. Kato for recording the ¹³C-n.m.r. spectra and Miss T. Naito for microanalyses.

REFERENCES

- 1 T. FUJIWARA, T. TAKEDA, Y. OGIHARA, M. SHIMIZU, T. NOMURA, AND Y. TOMITA, Chem. Pharm. Bull., 30 (1982) 4025–4030.
- 2 T. FUJIWARA, T. TAKEDA, Y. OGIHARA, M. SHIMIZU, T. NOMURA, AND Y. TOMITA, Chem. Pharm. Bull., 32 (1984) 1385–1391.
- 3 H. G. FLETCHER, JR., Methods Carbohydr. Chem., 2 (1963) 228-230.
- 4 J. HIRSCH, E. PETRÁKOVÁ, AND J. SCHRAML, Carbohydr. Res., 131 (1984) 219-226.
- 5 K. KOIZUMI AND T. UTAMURA, Carbohydr. Res., 63 (1978) 283-287.
- 6 P. A. J. GORIN AND M. MAZUREK, Can. J. Chem., 53 (1975) 1212-1223.