
DIMETHYL ISOPROPYLIDENE MALONATE, THE "FORGOTTEN" DIENOPHILE

Christian Chapuis

Firmenich SA, Laboratoires de Recherche, CH-1211 Geneva 8

Summary: Despite the reported unreactivity of dimethyl isopropylidene malonate 1a as a Diels-Alder dienophile, moderate yields of cycloadducts are obtained with various dienes in refluxing CHCl₃ in the presence of catalytic amounts of AlCl₃.

The construction of the 6-substituted 1,1,5-trimethylcyclohexane substructure I, a characteristic lipophilic moiety of many fragrances [1] and carotenoids [2], via a *Diels-Alder* approach (of type A [3], B [3], C[4] or D[5], *cf. Figure*) has been extensively investigated.

With regard to the type D Diels-Alder reaction, Cookson et al., in 1974, reported the unreactivity of dimethyl isopropylidene malonate (1a) with trans-1,3-pentadiene (2b) under a variety of conditions [3]; in contrast, Dauben subsequently described the uncatalysed cycloaddition of isopropylidene malonate 1b with the same diene to afford cycloadduct 3 in 54% yield [5b] (cf. Scheme 1).

This discrepancy encouraged us to re-investigate the *Diels-Alder* reactivity of **1a** with various **1**,3-dienes; our results are summarised in the *Table*.

Table

Entry	R2	R3	R4	R5	R6	R1	Temp. ℃	Time h	Yield of 3a-h % isolated
a	Н	Me	Н	Н	Н	Н	35	18	71
b	Н	Н	Н	Me	Н	Н	43	18	50
с	Н	Me Me	Н	Н	Н	н	62	18	41
d	н	Me	Me	Н	н	Н	62	18	72
e	н	Me	Н	Me	Н	Н	62	18	71
f	Me	Н	H	Me	Н	Н	62	87	25 ¹⁾
g	Н	Н	н	Н	C	H ₂ -	62	18	. 44
h	н	Н	н	н	CH ₂	-CH ₂	62	24	201)

1) AlCl₃ (0.3 equiv.)

Reaction of 1a with isoprene (2a) in refluxing CHCl₃ in the presence of AlCl₃ (0.1 mole equiv.) afforded *Diels-Alder* adduct 3a in 71% yield. In comparison, the sterically more demanding 2b gave cycloadduct 3b in 50% yield. This steric effect was also observed in the series of dienes 2d (72% yield), 2e (71% yield) and 2f (25% yield with AlCl₃ (0.3 mole equiv.) and a prolonged reaction time). The lower reactivity of 2f is partially due to steric hindrance, since even cyclic s-*cis* fixed dienes such as cyclopentadiene (2g, 44% yield) and 1,3-cyclohexadiene (2h, 20% yield, AlCl₃, 0.3 mole equiv.) also exhibit unusually low reactivity.

The ready retro *Diels-Alder* reaction of 3g and 3h is indicated by the absence of molecular ions in their MS and predominant fragments at 66 m/e and 80 m/e, corresponding to 2g and 2h respectively.

Several examples of activated trisubstituted dienophiles are known to perform intramolecular [4 + 2] cycloadditions [6] and such an approach was also briefly examined. Accordingly the esters 4 and 5 [7] were condensed with acetone (TiCl₄/CCl₄/pyridine/THF) [8] to afford the isopropylidene malonates 6 and 7 in 52% and 60% yields respectively (*Scheme 2*).

After prolonged heating in refluxing CHCl₃ in the presence of AlCl₃ (0.1 mole equiv.), 6 was recovered unchanged. Increasing the temperature (refluxing xylene) or the amount of catalyst ($0.3 \rightarrow 1$ mole equiv.) as well as employing Me₂AlCl or LiClO₄[9] was also not successful. When 7 was refluxed in CHCl₃ with AlCl₃ (0.1 mole equiv.), a 1.7:1 mixture of 7 and 10 (*Scheme 2*) was recovered in 82% yield. We believe that, in analogy with Mg²⁺ or Cu²⁺ catalysed rearrangements [10], the putative ester 9 could be a plausible intermediate for the isomerisation of 7 to 10 [11] *via* a double allylic rearrangement.

Acknowledgements: I am indebted to Prof. E. Wenkert for valuable discussions, Mr. R. Brauchli for ¹³C, ¹H and 2D– NMR correlation as well as Miss C. Cantatore for her experimental skill.

REFERENCES

- [1] G. Ohloff, "Riechstoffe und Geruchssin: Die Moleculare Welt der Düfte". Springer Verlag Berlin Heidelberg, 1990.
- [2] G. Britton, Nat. Product Reports 6, 359, 1989; ibid 3, 591, 1986; ibid. 2, 349, 1985; ibid. 1, 67, 1984.
- [3] D. A. Kagi, K. Subrahmania Ayyar, R. C. Cookson and R. M. Tuddenham. Soap, Perfum and Cosmet. 47, 29, 1974.
- [4] (a) O. Diels and K. Alder, Ann. Chem. 470, 62, 1929. (b) Y. R. Naves and P. Ardizio, Helv. Chim. Acta, 31, 2252, 1948.
 (c) I. N. Navarov and M. V. Mavrov, Z. obshch. Chim. 29(4), 1158, 1959. (d) A. Arai and I. Ichikizaki, Bull. Chem. Soc. Jpn, 35, 45, 1962. (e) J. M. McIntosh, H. B. Goodbrand and G. M. Masse, J. Org. Chem. 39, 202, 1974.
- [5] (a) A. V. Gurevich, N. I. Skvortsova; N. Y. Zyryanova; G. V. Kostyuk. Tr. Vses Nauch Issled Inst Sin Natur Dushist Vershchest 9, 60, 1971, CA: 78: 110657n. (b) W. G. Dauben, A. P. Kozikowski and W.T. Zimmerman, Tetrahedron Let. 8, 515, 1975. (c) M. Benzing, E. Vilsmaier, H. Martini, G. Michels and E. Anders, Chem. Ber. 122, 1277, 1989.
- (a) M. J. Bachelor and J. M. Mellor, J. Chem, Soc. Perkin trans 1, 985, 1989. (b) M. J. Bachelor and J. M. Mellor, Tetrahedron Let. 26, 5109, 1985, (c) J. D. White and B. G. Sheldon, J. Org. Chem. 46, 2273, 1981. (d) J. D. White and B. G. Sheldon, B. A. Solheim, J. C. Clardy, Tetrahedron Let. 52, 5189, 1978.
- [7] T. Hudlicky, D. Bhaskar Reddy, S. Govindan, T. Kulp, B. Still and J. P. Sheth. J. Org. Chem. 48, 3422, 1983,
- [8] W. Lehnert, Tetrahedron, 29, 635, 1973.
- [9] P. A. Grieco, J. J. Nunes and M. D. Gaul, J. Am. Chem. Soc. 112, 4595, 1990.
- [10] T. H. Underiner and H. L. Goering, J. Org. Chem. 55, 2757, 1990.
- [11] IR spectra: Perkin-Elmer 297 spectrometer, cm⁻¹; ¹H and ¹³C-NMR spectra (CDCl₃): Bruker WH 360 (360 and 90 MHz), δ [ppm] rel. to TMS (= 0 ppm); coupling constants J in Hz

MS: Varian MAT 112 spectrometer (ca 70 ev); intensities in % relative to the base peak (100%).

- 3a) IR 2950, 1730, 1435, 1240.
 - ¹H-NMR 1.09 (s, 6H), 1.63 (s, 3H), 2.09 (brs, 2H), 2.66 (m, 2H), 3.68 (s, 6H), 5.26 (m, 1H).
 - ¹³C-NMR 23.3q; 26.0q; 30.7t; 34.8s; 43.9t; 51.9q; 59.2s; 116.3d; 133.65s; 171.4s.
 - MS $M^{+-}240$ (9); 180 (43); 165 (25); 121 (100); 105 (36).
- 3b) IR 2950, 1730, 1435, 1050.
 - ¹H-NMR 0.91 (s, 3H), 1.03 (d, J=7, 3H), 1.17 (s, 3H), 1.7 (m, 1H), 2.77 (m, 1H), 3.11 (m, 1H), 3.66 (s, 3H), 3.77 (s, 3H), 5.35 (dxd, $J_1=9, J_2=3, 1H$), 5.63 (m, 1H).
 - ¹³C-NMR
 18.4q; 26.0q; 27.6q; 33.4d; 35.3s; 39.9t; 51.1q; 51.7q; 64.3s; 124.8d; 128.3d; 170.0s; 171.5s.

 MS
 M⁺ 240 (4); 180 (23); 176 (38); 121 (100); 105 (36); 82 (48).

3c)	IR	2940 1730 1430 1050
30)	¹ H-NMR	1.09 (s, 6H); 1.6 (s, 3H); 1.67 (s, 3H); 1.93 (m, 2H); 2.04 (m, 2H); 2.1 (brs, 2H); 2.68 (m, 2H); 3.68
		(s, 6H); 5.05 (t, J=7, 1H); 5.28 (m, 1H).
	¹³ C-NMR	17.7q; 25.7q; 26.0q; 26.4t; 30.7t; 34.7s; 37.3t; 42.1t; 51.9q; 59.4s; 116.3d; 124,2d, 131.3s; 137.3 s; 171.4s.
	MS	M ⁺⁻ 308 (3); 265 (20); 248 (16); 233 (24); 179 (50); 119 (100); 69 (90); 41 (80).
3d)	IR	2940, 1735, 1435, 1245, 1060.
	¹ H-NMR	1.08 (s, 6H); 1.57 (s, 3H); 1.61 (s, 3H); 2.07 (s, 2H); 2.58 (s, 2H); 3.68 (s, 6H).
	¹³ C-NMR	18.5q; 18.8q; 25.9q; 34.75s; 36.5t; 45.5t; 51.9q; 59.9s; 121.1 s; 124.9s; 171.4 s.
.	MS	M^+ 254 (20); 194 (62); 179 (45); 152 (37); 135 (100); 119 (30); 91 (20).
3e)	IK ITT ND 470	2950; 1723; 1430; 1240; 1050.
	-H-NMR	(3.88 (S, 5H); 1.0 (0, J=7, 5H); 1.17 (S, 5H); 1.30 (0, J=10, 1H), 1.07 (S, 1H), 2.34 (0, J=10, 1H), 3.1 (m, 1H); 2.65 (s, 2H); 3.74 (s, 2H); 5 (M (s, 1H))
	13C-NMP	18 7a: 23 1a: 26 1a: 27 5a: 33 7d: 35 8e: 44 7i:51 1a: 51 7a: 64 1s: 122 4d: 131 9s: 170 1s: 171 6s
	MS	M^+ 254 (10) 104 (70) 179 (62) 135 (100) 119 (30) 96 (32)
3f)	IR	2960: 1730: 1430: 1240: 1040: 790.
54)	¹ H-NMR	0.91 (d. J=7, 3H); 1.03 (d. J=7, 3H); 1.2 (s, 3H); 1.24 (s, 3H); 1.84 (m, 1H); 2.98 (m, 1H); 3.68 (s,
		3H); 3.7 (s, 3H); 5.32 (dxt, $J_1=11$, $J_2=2$, 1H); 5.64 (dxt, $J_1=11$, $J_2=3.5$).
	¹³ C-NMR	15.0q, 17.6q; 19.5q; 25.1q; 36.3d; 37.6s; 39.6d; 51.3q; 51.8q; 64.0s; 129.8d; 130.0d; 170.4s; 172.1s.
	MS	M ⁺ 254 (2); 222 (7); 194 (27); 179 (25); 162 (27); 147 (29); 135 (100); 119 (40); 82 (50); 67 (57).
3g)	IR	2950; 1730; 1430; 1235; 1050.
	¹ H-NMR	1.2 (s, 3H); 1.22 (s, 3H); 1.45 (d, J=7, 1H); 2.07 (d, J=7, 1H); 2.36 (brs; 1H); 3.35 (brs, 1H); 3.62 (s,
	12 -	3H); 3.72 (s, 3H); 6.07 (dxd, $J_1=7$; $J_2=3$; 1H); 6.35 (dxd, $J_1=7$, $J_2=3$, 1H).
	¹³ C-NMR	27.2q; 28.6q; 45.3t; 48.1s; 51.7q; 52.2q; 52.4d; 55.5d; 65.9s; 135.0d; 140.4d; 170.3s; 172.3s.
	MS	M^{+} 238 (0); 173 (15); 141 (90); 109 (28); 66 (100).
3N)		2930, 1723, 1430. $0.0 \text{ (r. 2H)} \cdot 1.1 \text{ (m. 2H)} \cdot 1.44 \text{ (r. 2H)} \cdot 1.08 \text{ (m. 1H)} \cdot 2.06 \text{ (m. 2H)} \cdot 3.02 \text{ (m. 1H)} \cdot 3.63 \text{ (r. 3H)} \cdot 3.66 \text{ (m. 2H)} \cdot 3.63 \text{ (r. 3H)} \cdot 3.66 \text{ (m. 2H)} \cdot 3.63 \text{ (r. 3H)} \cdot 3.66 \text{ (m. 2H)} \cdot 3.63 \text{ (r. 3H)} \cdot 3.66 \text{ (m. 2H)} \cdot 3.63 \text{ (r. 3H)} \cdot 3.66 \text{ (m. 2H)} \cdot 3.63 \text{ (r. 3H)} \cdot 3.66 \text{ (m. 2H)} \cdot 3.66 (m. 2$
		(0, 9 (3, 511), 1.1 (m, 211), 1.44 (3, 511), 1.58 (m, 111), 2.00 (m, 211), 5.02 (m, 111), 5.05 (0, 511), 5.00 (m, 211), 5.02 (m, 111), 5.05 (0, 511), 5.00 (m, 211), 5.02 (m, 111), 5.05 (0, 511), 5.00 (m, 211), 5.02 (m, 111), 5.05 (m, 111), 5.00 (m, 211), 5.05 (m, 111), 5.05
	13C-NMR	18 6r 22 2r 25 556; 29 9a; 38.05d; 41.65s; 44.35d; 51.4a; 51.8a; 64.1s; 132.2d; 134.1d; 171.2s;
	01000	171.7s.
	MS	M^{+} 252 (0); 221 (4); 173 (30); 141 (97); 109 (13); 80 (100).
6)	IR	2940; 1700; 1650; 1420; 1220.
	¹ H-NMR	2.07 (s, 3H), 2.09 (s, 3H); 3.77 (s, 3H); 4.72 (d, J=7; 2H); 5.16 (d, J=8, 1H); 5.26 (d, J=18, 1H); 5.79
		$(dxt, J_1=7, J_2=17, 1H); 6.33 (m, 2H).$
	¹³ C-NMR	23.1q; 23.2q; 51.9q; 64.9t; 118.6t; 124.3s; 126.8d; 134.8d; 136.0d; 155.8s; 165.4s; 165.9s.
	MS	M^+ 224(0); 192(4); 141 (100); 109 (72); 82 (30); 67 (70).
7)	IR	2950; 1720; 1640; 1435; 1240; 1100; 1050.
	H-NMR	1.77 (d, J=7, 3H); 2.05 (S, 3H); 2.06 (S, 3H); 5.76 (S, 3H); 4.06 (d, J=7, 2H); 3.05 (LXU, J ₁ -7, J ₂ -14, 11); 5.75 (and J -7, J -14, 11); 5.05 (dvd J -11, J -14, 11); 6.07 (dvd J -11, J -14)
	13C NMP	17, 5.75 ($qxu, j_1=7, j_2=14, 111$), 0.05 ($uxu, j_1=11, j_2=14, 111$), 0.27 ($uxu, j_1=11, j_2=14$). 18 1 q : 23 1 q : 23 2 q : 51 0 q : 65 4t: 123 45 d : 124 5 s: 130 6 d: 131 2 d : 135 0 d : 155 6s: 165 55s:
		165.9s
	MS	$M^{\pm}(238, (2))$: 141 (96); 109 (68); 79 (100).
10)	IR	2950; 1720; 1245; 860.
- /	¹ H-NMR	1.37 (d, J=7, 3H); 2.05 (s, 3H); 2.1 (s, 3H); 3.76 (s, 3H); 5.13 (d, J=9, 1H); 5.29 (d, J=16, 1H), 5.51
		(quint, J=7, 1H), 5.7 (dxd, $J_1=7$, $J_2=16$, 1H); 6.3 (m, 2H).
	¹³ C-NMR	20.0q; 23.0q; 23.2q; 51.8q; 71.1d; 118.4t; 124.6s; 132.3d; 132.4d; 136.1d; 155.4s; 165.1s.
	MS	M ⁺ 238 (2); 206 (5); 163 (7); 141 (100); 109 (62); 81 (70).

- --

(Received in France 14 November 1990)
