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Abstract. A concise, convergent synthesis of the caloporoside disaecharide is 
described in which the key step involves direct, stereoselective formation of the 
B--mannosidic linkage by the sulfoxide method. © 1998 Elsevier Science Ltd. All rights reserved. 
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Caloporoside (1) is a novel inhibitor of phospholipase C, that was isolated several years ago from 

Caloporous dichrous by Steglich and co-workers. 1 Desacetyl caloporoside (2), a further fungal metabolite, is 

reported to inhibit, in vitro, the binding of 3~S-labelled t-butylbicyelophosphorothionate to the 

GABA^/benzodiazepine chloride channel r~ceptor complex. 2 Both substances are charaeteriz~ by the highly 

unusual B-(l~5)-linkage of a D-mannopyranoside unit to a D-mannonate ester. The stereoselective chemical 

synthesis of the 13-mannopyranosidic linkage is a well-known probiem in carbohydrate chemistry3-5 and this, 

together with the interesting biological activity, has drawn our attention to these molecules, in particular to 

caloporoside with its ad~ditional requirement for regioselective esterification. A recent synthesis of 1, by 

Fiirsmer,6 which employs an indirect route to the ~mannoside unit prompts us to disclose here our synthesis 

of the caloporoside disaccharide 3. The simpler desacetyl caloporoside (2) has been prepared by Tatsuda 

using a related, convergent mute, but with a coupling selectivity of only 2:1 in favor of the B-anomer in the 

mannosylation step. 7 
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We have recently reported on a new direct method for the highly stere~selective synthesis of 

I]--rnannospyranosides.3,8, 9 The method, which is an evolution of Kahne's sulfoxide glyeosidation 

protocol,10,11 involves the in situ conversion of a mannosyl sulfoxide to an ct-mannosyl triflate 12,13 which 

subsequently takes part in an SN2-1ike reaction on exposure to a glycosyl aeeeptor. Our intended application of 

this strategy to the formation of the key [3-mannopyranoside linkage permits 3 to be dissected into two 

subunits 4 and 5, with 5 itself being readily derived from 4 by a simple three step protocol. The rnannosyl 

sulfoxide 4, which had previously served us well in our synthesis of the trisaccharide component of the 

Hyriopsis schlegelii Glycosphingolipid: I~-D-XyI-(1 ~2)-~-D-Man-(1---r4)-a-D-Glc-OMe, 14,15 is therefore the 

precursor to both sections of the target making this a very convergent route. 

*o 
4 5 

Thus, sulfoxide 4 was prepared as previously describedl4,15 and exposed to triffic anhydride (Tf20) 

and 2,6-di-tert-butyl--4-rnethylpyridine (DTBMP) at -78 °C in CH2CI 2 followed by quenching with wet Et~O 

to give the pyranose 6 in 70% yield. Oxidation of 6 with tet~apropylammonium perruthenate (TPAP) 16 

provided a 78% yield of  the mannonolactone 7, which on treatment with iso-propanol afforded the glycosyl 

aeeeptor 5 in 92% yield (Scheme 1). 

o 
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Scheme 1 (a) Tf20, DTBMP, CI--I2CI 2, -78 °C; (b) Et20/H20, -78 *C - 0 *(2; (c) TPAP, CH2C12, rt; 

(d) i-PrOH, DMAP, rt, 48 h. 

Coupling of $ and 4 was achieved by activation of 4 at -78 *C in CH2CI 2 with Tf20 and DTBMP, 

followed by addition of 5. The disaccharide 8 was isolated in 56% yield in the form of a pure ~mannoside, 

whose stereochemistry was indicated by the typical upfield chemical shift (5 3.24) of the H-5 resonance in the 

pyranoside ring3 and subsequently confirmed by the ~Jca coupling 17 of 154.6 Hz between C-1 and H-1 in the 

same ring. The two allyl protecting groups were next removed by isomerization with 

(MePh~)2(COD)~pFtI8 and subsequent hydrolysis of the enol ethers with HgCl:,/I-IgO in aqueous acetone 

giving the diol 9 in 72% yield. Acetylation then provided the diacetate 10. Finally, hydrogenolytic removal 
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of  the benzyl and benzylidene groups over Pearlman's catalyst in methanol led to the isolation of the target 

disaccharide 3 in excellent yield (Scheme 2). 
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Scheme 2 (a) Tf20, DTBMP, CH2CI 2, -78 °C; (b) 5, -78 °C; (c) Lr([) cat; (d) HgO/HgCI 2, acetone/watch (c) 

Ac20, DMAP, pyridin¢; (t') H 2, Pd(OH) 2, EtOH 

This concise, direct synthesis of 3 is to be contrasted with the recent synthesis of Fih-'stner6 in which 

the corresponding glucose based disaccharide 11 was prepazed and then converted to 12 in a tinee step 

deprotecdon/activation~nvcrsion sequence. Sclf-cvidendy, a highly stereoselccdvc glycosylation reaction 

coupling two mannose units derived from a common precursor wig always be more efficient than a protocol 

that couples glucose to mannose followed by a three step inversion protocol. Further progress toward the 

synthesis of 1, by the direct 13-mannosyladon method, will be reported in due course. 
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