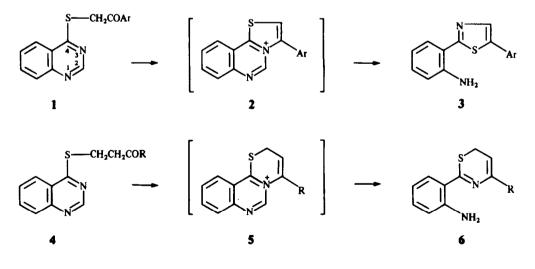
EXTRUSION REACTIONS-VI¹

TRANSFORMATIONS OF BETA (4-QUINAZOLINYLTHIO) KETONES TO 3-(BETA KETOALKYL)-4(3<u>H</u>)-QUINAZOLONE DERIVATIVES

HARJIT SINGH* and KANWAL DEEP†

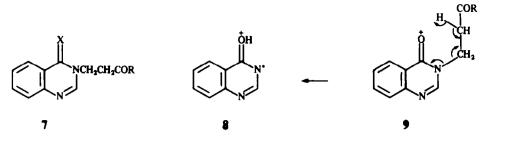
Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India


(Received in UK 19 April 1984)

Abstract-4-(4-Quinazolinylthio)-butan-2-one and 3-(4-quinazolinylthio) propiophenone (4, $R = CH_3$, C_6H_5) with POCl₃ give 3-(3-oxobutyl)-4(3<u>H</u>)-quinazolone and 3-(2-benzoylethyl)-4(3H)-quinazolone (7, $R = CH_3$, C_6H_5 , X = O) via $S \rightarrow N$ rearrangement followed by C=S to C=O conversion. Non-protic

heterocyclic thioamides undergo similar oxidation.

2-(4-Quinazolinylthio) acetophenones (1) with sulphuric acid-PPA undergo mainly S-extrusion² but with conc HCl or HClO₄, $^{3-5}$ give 2-(o-aminophenyl) thiazoles (3) through hydrolytic extrusion of C(2) of quinazoline moiety of the first formed thiazolo[3,2-c] quinazolinium cation (2). 3-(4-Quinazolinylthio (ketones (4, $R = CH_3$, C_6H_5) on similar reaction could provide 2-(o-aminophenyl)-6H-1,3-thiazine derivatives (6). Phosphoryl chloride, a better cyclodehydrating agent, might accomplish cyclodehydration of 4 to 5 which could provide 6. It has been found that in these reactions instead of the envisaged ring transformation, 3-(betaketoalkyl)-4(3H)-quinazolines (7, X = O) are formed.⁶ POCl₃ has further been found to perform C = S to $\sim = 0$ conversion in non-protic heterocyclic thioamides.


The parent ion peak at M^+m/e 216 in the mass spectrum and elemental analysis suggest a molecular formula $C_{12}H_{12}N_2O_2$. Irs ¹H-NMR signals at $\delta 2.17$ (s, 3H,CH₃), 3.07 (t, 2H,CH₂), 3.25 (t, 2H,CH₂), 7.30-8.00 (m, 4H, ArH) and 8.80(s, 1H, C(2)H) are consistent with the structural unit -CH₂CH₂COCH₃ and a quinazoline ring. The IR spectrum exhibits two CO absorption bands at 1690 and 1655 cm⁻¹ as against one CO absorption band at 1700 cm^{-1} in the precursor. Obviously, the additional CO group has been created at C(4) by the replacement of the S by O, a situation which necessitates the shifting of the 3-oxobutyl moiety. The presence of 3-oxobutyl group at N(3) is evident from the mass spectrum base peak at m/e 146 for the cation (8) which can be formed as a result of beta cleavage via McLafferty rearrangement (9) which is only possible if the 3-oxobutyl group is present at N(3)

RESULTS AND DISCUSSION

4-(4-Quinazolinylthio)butan-2-one (4, $R = CH_3$) on refluxing in phosphoryl chloride (POCl₃) gives three products. The major product, R_f 0.74 (CHCl₃-CH₃OH, 10:2), m.p. 76° (40%), is devoid of elemental S. of quinazoline-4-one system. Thus this component has been assigned the structure, 3-(3-oxobutyl)-4(3<u>H</u>) quinazolone (7, $\mathbf{R} = CH_3$, X = O) which is corroborated by its comparison with an authentic sample procured from quinazoline-4(3<u>H</u>)-one and 4chlorobutan-2-one and the ¹³C-NMR spectrum. The other two products are quinazoline-4(3<u>H</u>)-thione (R_f 0.40; 15%) and quinazoline-4(3<u>H</u>)-one (R_f 0.34; 20%). Similarly, 3-(4-quinazolinylthio)propiophenone (4,

[†] Present address : Malti-Chem Research Centre, Nandesari, Baroda, India.

 $R = C_6H_3$) gives 3-(2-benzoylethyl)-4(3<u>H</u>)-quinazolone (7, $R = C_6H_5$, X = O) as the major product (60%). On performing these reactions in POCl₃ containing polyphosphoric acid, similar results are obtained. Ethyl beta (4-quinazolinylthio)propionate (4, $R = OC_2H_5$) with POCl₃ as well as POCl₃—PPA gives only quinazoline-4(3<u>H</u>)-one.

2-(4-Quinazolinylthio)acetophenones (1) with POCl₃ followed by aqueous sodium bicarbonate treatment give 2-(o-aminophenyl)-4-arylthiazoles,4 in yields better than those obtained with conc HCl-HClO4. Thus 2-(4we find that quinazolinylthio)acetophenones (1) which form thiazolo[3,2-c]quinazolinium cations (2), on hydrolytic C(2) extrusion, provide derivatives of 3 but beta (4quinazolinylthio)ketones (4) which in a similar sequence of steps envisage the formation of relatively less stable 2H, 1,3-thiazino[3,2-c]quinazolin-5-ium cations (5), undergo an alternate 1,3-migration of the chain attached at S in 4 to N(3) of quinazoline in analogy with similar ethers⁸ and the resulting Σ =S is transformed to C=O to form 3-(betaketoalkyl)- $4(3\underline{H})$ -quinazolones (7, X = O).

In order to investigate the above postulate, 3-(3oxobutyl)quinazoline-4(3<u>H</u>)thione (7, $R = CH_3$, X = S) was prepared from 3-(3-oxobutyl)-4-(3H)-quinazolone $(7, R = CH_3, X = O)^6$ and phosphorus pentasulphide in dry pyridine. On monitoring the reaction of 4-(4quinazolinylthio)butan-2-one (4, $R = CH_3$) with POCl₃ through TLC, it has been found that 3-(3oxobutyl)quinazoline-4(3<u>H</u>)-thione (7, $R = CH_3$, X = S) is formed as a minor product (TLC), but it would not be isolated. However, 7 $(R = CH_3, X = S)$, on refluxing in POCl₃ is converted into 3-(3-oxobutyl)- $4(3\underline{H})$ -quinazolone (7, R = CH₃, X = O) in 45% yield. Subsequently, to confirm the formation of $7 (R = CH_3)$ X = O) as a result of thermal migration of 3-oxobutyl moiety from S in 4 ($R = CH_3$) to N(3) of quinazoline ring, we have heated $4(R = CH_3)$ in xylene or DMF and 7 ($R = CH_3$, X = S) has been isolated in 40% and 25% yields respectively. It may be concluded that the conversion of beta(4-quinazolinylthio)ketones (4) to 3-(betaketoalkyl)-4(3<u>H</u>)-quinazolones (7, X = O) takes place by a sequence of thermally induced conversion of 4 to 7 (X = S), followed by the conversion of \sum C=S to X = 0 to form 7 (X = 0). In order to investigate whether the O in Σ =O formed from Σ =S stems from POCl₃, we tried to isolate PSCl₃, in the mixture, but all attempts in this direction failed.

In order to investigate whether these rearrangement reactions are characteristic of a 3-ketoalkyl moiety present at S of quinazoline-4(3H)-thione or whether

analogous compounds possessing any other group incapable of intermolecular condensation would also undergo such a transformation, it has been found that with POCl₃, 4-benzylthioquinazoline⁹ provides 3benzyl-4(3<u>H</u>):quinazolone in 40% yield.

The oxidizing character of phosphoryl chloride for the conversion of -C=S to -C=O is unprecedented. We have also found that 3benzylquinazoline-4(3<u>H</u>)thione⁹ and 1methylpyrrolidine-2(1<u>H</u>)-thione on refluxing in POCl₃ give 3-benzyl-4(3<u>H</u>) quinazolone and 1-methyl-2(1<u>H</u>)pyrrolidone in 70% and 40% yields respectively.

EXPERIMENTAL

For general experimental details see ref. 1.

4-(4-Quinazolinylthio)butan-2-one (4, $R = CH_3$)

A soln of 4-chlorobutan-2-one (0.01 mol) in EtOH (10 ml) was added to a soln of quinazoline-4(3<u>H</u>)-thione (0.01 mol) in 2% NaOH aq and the mixture was vigorously stirred for 2 hr. The product separated was crystallized from EtOH, 75%, m.p. 110°. IR (CHCl₃): 1700 cm⁻¹ (CO). ¹H-NMR (CDCl₃): δ 2.12 (s, 3H, CH₃), 3.12 (t, 2H, CH₂), 4.51 (t, 2H, CH₂), 7.55-8.66 (m, 5H, ArH). (Found : N, 12.10; S, 13.80. Calc. for C₁₂H₁₂N₂OS : N, 12.06; S, 13.87%). The data of compounds obtained similarly from quinazoline-4(3<u>H</u>)-thione and β -chloropropiophenone—ethylchloropropionate are given below :

Compound 4 (R = C₆H₅). Yield 85%, m.p. 135° (EtOH). IR (CHCl₃): 1700 cm⁻¹ (CO). ¹H-NMR (CDCl₃): δ 3.65 (t, 2H, CH₂), 4.8 (t, 2H, CH₂), 7.50–8.40 (m, 10H, ArH). (Found : C, 64.30; H, 4.75; N, 9.00; S, 10.84. Calc for C₁₇H₁₄N₂OS : C, 69.38; H, 4.76; N, 9.36; S, 10.88%.) Compound 4 (R=OEt). Yield 60%, m.p. 75° (CHCl₃). IR

Compound 4 (R==OEt). Yield 60%, m.p. 75° (CHCl₃). IR (CHCl₃): 1720 cm⁻¹ (CO). ¹H-NMR (CDCl₃): δ 1.25 (t, 3H, CH₃), 3.07 (t, 2H, CH₂), 4.15 (q, 2H, CH₂), 4.77 (t, 2H, CH₂), 7.7-8.87 (m, 5H, ArH). (Found : N, 10,65; S, 11.90. Calc for C₁₃H₁₄N₂O₂S: N, 10.68: S, 11.73%.)

Reactions of (4-quinazolinylthio)ketones with POCl₃

General procedure: A suspension of (4-quinazolinylthio) ketone (0.01 mol) in POCl₃ (30 ml) was refluxed. The progress of the reaction was monitored by TLC of the CHCl₃ extract of an aliquot portion after neutralization with NaHCO₃. The reaction was completed in 5–7 hr. POCl₃ was distilled off under reduced pressure and the residue was neutralized with NaHCO₃ aq, extracted with CHCl₃, the extract was dried over Na₂SO₄ and then CHCl₃ was distilled off. The residue was chromatographed on silica gel using benzene---CHCl₃--EtOAc (10:2:1) as eluent. In case of 4 (R = aryl), products separated at NaHCO₃ aq treatment stage and were collected.

(a) 4-(4-Quinazolinylthio)butan-2-one (4, $R = CH_3$) with POCl₃ furnishes 3-(3-Oxobutyl)-4(3H)-quinazolone (7, $R = CH_3$, X = O), yield 45%, m.p. 76° (EtOH). IR (CHCl₃):

1655, 1690 cm⁻¹ (CO). ¹H-NMR (CDCl₃): δ 2.17 (s, 3H, CH₃), 3.07 (t, 2H, CH₂), 4.25 (t, 2H, CH₂), 7.3–8.4 (m, 5H, ArH). ¹³C-NMR (CDCl₃): δ 30.040 (q, CH₃), 41.324 (t, CH₂), 43.556 (t, CH₂), 121.245 (s, ArC), 124.748 (d, ArCH), 127.104 (d, ArCH), 128.344 (d, ArCH), 135.257 (d, ArCH), 143.503 (d, ArCH), 149.270 (S, ArC), 160.058 (s, CO), 205.846 (s, CO). Mass: M⁺ m/e 216 (C₁₂H₁₂N₂O₂). (Found : C, 66.66; H, 5.40; N, 13.00. Calc for C₁₂H₁₂N₂O₂: C, 66.66; H, 5.55; N, 12.95%)

Yields : quinazoline-4(3<u>H</u>)-thione, 15% ; quinazoline-4(3<u>H</u>)one, 20%.

(b) 3-(4-Quinazolinylthio)propiophenone (4, $R = C_6H_3$) with POCl₃ furnishes 3-(2-benzoylethyl)-4(3H)-quinazolone (7, $R = C_6H_3$, X = O), yield 60%, m.p. 125° (CHCl₃). IR (CHCl₃): 1688, 1692 cm⁻¹ (CO). ¹H-NMR (CDCl₃): δ 3.60 (t, 2H, CH₂), 4.42 (t, 2H, CH₂), 7.25–8.37 (m, 9H, ArH). Mass : M⁺ m/e 278 (C₁₇H₁₄N₂O₂). (Found : C, 77.30; H, 4.87; N, 11.0. Calc for C₁₇H₁₄N₂O₂ : C, 77.38; H, 5.03; N, 10.71%.)

Yields: quinazoline-4(3<u>H</u>)-thione, 10%; quinazoline-4(3<u>H</u>)one, 10%.

(c) 4-Methyl-2-(4-quinazolinylthio)acetophenone (1, $R = p-CH_3C_6H_4$) with POCl₃ furnishes 2-(o-Aminophenyl)-4tolylthiazole (3, $R = p-CH_3C_6H_4$), yield 85%, m.p. 108° (EtOH). IR (CHCl₃): 3200, 3400 cm⁻¹ (NH₂). ¹H-NMR (CCl₄): δ 2.5 (s, 3H, CH₃), 5.65 (s, 2H, NH₂, exchangeable with D₂O), 6.70 (b, 1H, CH), 7.28-7.80 (m, ArH). Mass : M⁺ m/e 266 (C₁₆H₁₄NS).

(d) 2-(4-Quinazolinylthio)acetophenone (1, $R = C_6H_3$) with POCl₃ furnishes 2-(o-aminophenyl)-4-phenylthiazole (3, $R = C_6H_3$),⁴ yield 80%.

3-(3-Oxobutyl)-quinazoline-4(3H)-thione (7, $R = CH_3$, X = S) A suspension of 7 ($R = CH_3$, X = O) (0.01 mol), P_2S_5 (0.01 mol) in dry pyridine (100 ml) was refluxed. The reaction was completed in 9 hr (TLC). Pyridine was removed under reduced pressure and the residue was neutralized with NaHCO₃ aq. The solid separated was purified by chromatography on silica gel using first CHCl₃ and then CHCl₃-EtOAc (10:3) as eluents. Yield 45%, m.p. 210°. IR (CHCl₃): 1660 cm⁻¹ (CO). Mass: M⁺ m/e 232 (C₁₂H₁₂N₂OS).

Acknowledgements: We thank Prof. P. J. Scheuer, University of Hawaii for mass and ¹³C-NMR spectra and UGC (India) for financial assistance.

REFERENCES

- ¹Part V. H. Singh, P. Singh and N. Malhotra, J. Chem. Soc. Perkin Trans. 1, 2647 (1981).
- ²H. Singh, C. S. Gandhi and M. S. Bal, *Heterocycles* 14, 3 (1980).
- ³H. Singh, C. S. Gandhi and M. S. Bal, Chem. Ind. 420 (1980).
- ⁴H. Singh, C. S. Gandhi and M. S. Bal, *Indian J. Chem.* **20B**, 17 (1981).
- ⁵6-Methyl-4-quinazolinylthioacetophenones unsubstituted at C(2), via a similar sequence give 2-acetonyl-4-arylthiazole derivatives. H. Singh, S. K. Aggarwal and N. Malhotra, *Heterocycles* 22, 353 (1984).
- ⁶M. S. Bal, K. Deep and H. Singh, *Indian J. Chem.* **21B**, 805 (1982).
- ⁷P. Singh, K. Deep and H. Singh, J. Chem. Res. in press.
- ⁸R. J. Grout and M. W. Patridge, J. Chem. Soc. 3549 (1960).
- ⁹J. Tulecki and J. Kalinowska, *Torz. Ann. Pharm.* 6, 69 (1967); Chem. Abst. 71, 112881 k (1969).