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ABSTRACT: A cuprous chelate bearing a secondary sphere
hydrogen bonding functionality, [(PV-tmpa)Cu']*, trans-
forms *NOg) to N,Og) in high-yields in methanol. Ligand de-
rived proton transfer facilitates N-O bond cleavage of a puta-
tive hyponitrite intermediate releasing N,O(y), underscoring
the crucial balance between H-bonding capabilities and acidi-
ties in (bio)chemical '‘NO ) coupling systems.

Transition metal mediated reductive coupling of nitric ox-
ide ("NO(y)) to nitrous oxide (N;Og)) has been implicated in
a number of critical chemical processes including the denitri-
fication enzymatic cascade within the geochemical nitrogen
cycle, as well as the detoxification of automobile and industrial
exhausts by catalytic convertors.! Further, pathogens utilize
nitric oxide reductase (NOR) activity in debilitating host de-
fense activities exerted by ‘NOg).> Bacterial NORs may pos-
sess a heme/non-heme diiron (or heme-copper; HCO’s) ac-
tive site.!>* Also, widely occurring (bacteria, archaea and pro-
tozoa) flavin dependent diiron (non-heme binuclear)* and
fungal P4S0nor (i.e, with heme-thiolate active sites)® en-
zymes are important. The corresponding chemical transfor-
mation (2'NO() + 2H* + 2e” = N,O(,) + H,0) involves two
key mechanistic steps: (1) N-N bond formation following the
reduction of "N O to give hyponitrite (N;O0,*; HN),'* and
(2) N-O bond cleavage, with or without the assistance of pro-
tons. In that, the corresponding metal centers and adjacent
water molecules/amino acid side chains have been proposed
to act as electron and proton sources, respectively.'®” How-
ever, precise details concerning the N-N coupling process
leading to the HN intermediate, the varying possible metal
binding mode(s) (Chart 1) to this species (or is it N,O,!~ or
neutral N,O,) ®? and the exact timing of metal redox shuttling
and protonation events are to-date not well understood.*>7%10
In-depth comprehension of such details has significant im-
pacts in rational design of NOR-related therapeutics and man-

2,11

aging key green house gases such as N,O ).

In this regard, small-molecule models are fundamentally
important in shedding light on a number of these mechanistic
unknowns.!#1%12 Qur own efforts have focused on combina-
tions of heme, non-heme Fe- and Cu-containing "NO ) cou-
pling systems.!®!* The latter are not only of interest with re-
gard to heme-copper oxidases (vide supra),'">>¢ but also (1)
Cu-dependent nitrite reductases that transform "‘NOg, to
N,O(,) under large "NOy) concentrations,'*" (2) Cu!/"NO,
interactions that lead to "NOy)-disproportion-ation (Cu' +
3'NO() = N,O(,) + Cu''(NO;")),'>!* and/or physiological
peroxynitrite (“(OON=0) formation,'s and (3) with regard to
"NOy)-

environmentally-benign next

1d-f16

generation
detoxification catalysts.

Chart 1. Different Hyponitrite Binding Modes Involving Two

Metal Ion Centers. '4*
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Our previous account has revealed that in protic solvents
(i, MeOH) [(tmpa)Cu!(MeCN)]* (tmpa = tris(2-pyridyl-
methyl)amine) can efficiently couple "NOyy), giving a dicop-
per(II) trans-hyponitrite-bridged species, ([{(tmpa)Cu'},(y-
N,0,%)]*), which undergoes redox reversal in aprotic sol-
vents leading to Cu'-mediated "NOg)-disproportionation.'’
The present work, in accordance with other reports®!2618
highlights the importance of non-covalent interactions in cho-
reographing selective/efficient pathways for metal-mediated
"NO(g) reduction. In support, hydrogen bonding: (1) has been
proposed for HN-level intermediates of HCO’s*® (2) is

thought to mediate proton transfer during NOR turnover,"”
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and (3) has been shown to stabilize the Fe!'-y-oxo-Fe
ing state of NOR.* The latter observation also suggests the
possibility of H-bonding interactions with the ligated atoms of
a putative HN intermediate in NOR. Moreover, the balance
between acidity and H-bonding strength is imperative for
NOR activity, where protonation of the HN intermediate is
thought to lead to N-O bond cleavage, releasing N, O (g). 7412

Herein, we report the first example of a complete Cu-only
functional model of NOR that stoichiometrically couples
‘NO() to N,O assisted by an intramolecular hydrogen
bonding derived proton transfer event. The complex [(PV-
tmpa) Cu'](B(C¢Fs)4)*! promotes efficient coupling of 'NO )
generating a putative H-bonded HN intermediate ([{(PV-
tmpa)Cu'},(y-N,0,>)]**; A; Figure 1) in MeOH at RT,
which upon protonation by the in-built pivalamido groups
quantitatively releases N,O(y), producing the structurally-
characterized copper(II) product complex B (Figure 1) sup-
ported by the deprotonated PV-tmpa ligand.

N,0 + H,0

A B
2NO
E No observable intermediate
—_— > cu' product + N,0

Figure 1. Proposed reaction landscape for [{PV-tmpa) Cu']* with
excess "NO(y) in MeOH under ambient conditions (top). The
CFs-analogue couples "NO(g) instantaneously, with no observa-
ble intermediate (bottom).

When a pale yellow MeOH solution of [ (PV-tmpa)Cu']*
(Amax (e/M7em™) =370 nm (3300)) is treated with "NOy) at
RT, a rapid color change to forest green was observed (A;
Amax(g) = 260(17800) , 320(5900), 645(160) and 760(150)
nm), which gradually turns into a sea green solution (B;
Amax(g) = 260(19100), 320(6600), 645(145) and 760(140)
nm) over two hours (Figure 2). The EPR spectral analysis of
both the intermediate and the final species indicates the pres-
ence of a single Cu" species within a trigonal bipyramidal
(TBP) geometry (i, g1 > g with a d,* ground state; Figure
2) around the copper center;'” the g and A values closely re-
semble those of previously published species [(PV-
tmpa) Cu'’(OOH) ]*. Moreover, the optimized Cu': "NOy)
stoichiometry was found to be 1:1.5 (essentially a 1:1 reac-
tion??) as observed for [ (tmpa)Cu!(MeCN)]*.”7
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Figure 2. Top: Electronic absorption spectral changes during a
reaction of 0.1 mM [(PV-tmpa) Cu']* (red) with 1.5 equiv."NO(y)
at RT, rapidly producing A (green), which then slowly decays to
B (blue). Insets: Absorbance changes for the same reaction when
2 mM [(PV-tmpa)Cu']* is used, and the respective time trace for
645 nm. Bottom: EPR spectra of A (green) and B (blue) at 20K
(2 mM in MeOH/EtOH = 1:1 glass; g1 =2.214, A1 = 135 G; g
=2.044,A=71G).

The final Cu" product, B was isolated in high yield
(>98%),** and was unambiguously characterized via single
crystal X-ray crystallography. In agreement with its solution
EPR spectrum (Figure 2), the crystal structure (Figure 3) re-
veals a pentacoordinate Cu" center within a distorted TBP ge-
ometry (t =0.77).2 In that, the pivalamido group is deproto-
nated (no residual electron density peak could be found near
NS in the difference Fourier map) and the Cu' ion is iminox-
ide-ligated.?® In further support, (1) only a single B(CsFs),
counteranion is found in the asymmetric unit, indicating that
the ligand-Cu" fragment is overall +1 charged; (2) compari-
son of NS...Cl19, C19...01, and O1l...Cu distances
(1.317(2), 1.280(2), and 1.8801(13) A) in B with the previ-
ously published X-ray structures of [(PV-tmpa)Cu'(N;")]*
and [(PV-tmpa)Cu"]?* (1.36,” 1.21,”” and 1.94 A?*)* unam-
biguously establish the iminoxide formation (i.e., the contrac-
tion and elongation of the N5...C19 and C19...01 bond

2
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lengths, respectively), thus the anionic nature of the axially
Cu'"-coordinated O-atom in B (Figure 3).

C19

Figure 3. Displacement ellipsoid plot (50% probability level) of
the monocationic complex B at 110(2) K. The H atoms and the
noncoordinating B(C6F5)4‘ counteranion are omitted for clarity.

The formulation and yield of B was further confirmed by
comparing its spectroscopic properties to those of an authen-
tic compound, prepared by reacting [ (PV-tmpa) Cu']** com-
plex?® with 1 equiv (+-BusN*)(OH") in acetonitrile at RT.*
These findings clearly elucidate that [(PV-tmpa)Cu']* reacts
with 1 equiv ‘NO) to stoichiometrically generate B in MeOH
under ambient conditions, with the intermediacy of a distinct,
unstable intermediate (Figure 2).

Interestingly, without the in-built pivalamido moiety,
[ (tmpa)Cu!(MeCN)]* generates the stable hyponitrito com-
plex [{(tmpa)Cu''},(y-N,0,>")]** under identical conditions
which can subsequently react with 2 equiv HCI stoichiomet-
rically producing [ (tmpa) Cu"(Cl) ]*, N;O(g), and H,O."” This
body of evidence leads us to the proposal summarized in Fig-
ure 1, where [(PV-tmpa)Cu']* reacts with "NO,) generating
the hyponitrito complex, [{(PV-tmpa)Cu'},(y-N,0,>)]*,
which upon two ligand derived proton transfer events from
each PV-tmpa ligand fragment produces 2 equiv B, N,O(),
and H,O. In strong agreement, [ (PV-tmpa)Cu']* reacts with
~1.5 equiv of "NOy) to liberate N,O ) in ~86% yield as de-
tected and quantified by headspace gas chromatographic anal-

4 no nitrites were detected in solution under these condi-

ysis;?
tions, ruling out a Cu-mediated NO¢,) disproportionation
pathway.!* Therefore, we do attribute the metastable®® spec-
troscopically [{(PV-
tmpa) Cu'},(4-N,0,>") ]**, with an O-bound hyponitrito lig-
and as in [{(tmpa) Cu''},(y-N,0,2) ]+

Further, when the pivalamido group of the supporting lig-

observed intermediate A to

and was replaced by CF;C(O)NH- having a far more acidic
amide-hydrogen (by > 8 pKa units),* the Cu' complex (X-ray
structure determined),** reacts far more rapidly with "NO,
giving N,O(,) in ~96% yield (ty, = 0.5 min), with no observa-
ble intermediate even when the transformation is carried out

at -40 °C (Figure 1).2* Protons are known to be crucial to the
NOR cycle. 7a,7b,12a,12g

Our formulation of [{(PV-tmpa) Cu''},(u-N,0,>) > (A)
is further supported by its spectroscopic features: (1) The
electronic absorption characteristics of A and B are strikingly
similar (Figure 2), revealing a close similarity in their Cu" pri-
mary coordination spheres and geometries (ie, N,O~ as
found in B; see Figure 3); thus, in support of an O-bound hy-
ponitrito ligand in A (also see below). (2) The EPR spectrum
(Figure 2) of A (as well as in B) indicates the presence of site-
isolated (i.e., magnetically and/or electronically) Cu®® centers
within a TBP geometry (also see the SI)?* as in the case of
[{(tmpa) Cu"}»(y-N,0,)]**.77 (3) Although electronic ab-
sorption features of A could be altered by the potential H-
bonding interactions between the hyponitrito moiety and PV-
tmpa ligand framework, we note that its charge-transfer fea-
ture at 320 nm (Figure 2) is still comparable to that of
[{(tmpa) Cu"},(¢-N,0,2)]** at 310 nm."”

To further probe the geometric-electronic properties of
the putative hyponitrito complex (A), we independently syn-
thesized and characterized the related cupric nitrito complex,
[(PV-tmpa)Cu"(NO,)]*, via a metathesis reaction between
[(PV-tmpa)Cu'(Cl) ]* and AgNO,.>* The electronic absorp-
tion energies of [(PV-tmpa)Cu"(NO,)]* are very similar to
those of A and B, as expected, especially the charge-transfer
peak at 320 nm.>* As well, the EPR spectrum of [(PV-
tmpa) Cu''(NO,) ]* is also comparable to those of A and B. All
of these findings fully reflect close similarities in coordination
geometries about their Cu" centers in solution.*

The solid-state structure of [(PV-tmpa)Cu'(NO,)]* is
unique, possessing a pseudo-bidentate nitrito ligand.?* Mark-
edly, the proximal O-atom of the nitrite ligand is patently H-
bonded with the amide group of the PV-tmpa ligand frame-
work with a Nopigese+Oniniee distance of 2.877(2)A (NH,.
mides** Onirite = 2.025(19)A), and a N-H,mige—Onitrite angle of
162.0(19)°.3 This observation, along with unambiguous lit-
erature evidence that H-bonding occurs between the N-H
moiety of the ligand pivalamido group and the proximal X-
atom in [LCu'-X]* complexes (X = superoxide, peroxide, hy-
droxide, hydroperoxide, azide;)* supports our claim of analo-
gous H-bonding interaction in [{(PV—tmpa) CuH}z(y—NZOf’
)]** (A), as depicted in Figure 1.

To further interrogate the geometric properties of the pu-
tative cupric hyponitrito species, [{(PV-tmpa)Cu'},(y-
N,0,>)]* (A), we carried out Density Functional Theory
(DFT) computations along with COSMO continuum solvent
model. In light of our knowledge of the X-ray structure of
[{(tmpa)Cu'},(4-N,0,2")]**,"7 the structure of A was opti-
mized with (and without) a MeOH molecule placed near each
Oun atom (vide infra).34 The distorted TBP pentacoordinated
Cu" centers are bridged by an 0,0’ bound trans-hyponitrito

3
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ligand,* Cu...Cu = 5.861 A (Figure 4), comparable to that in
[{(tmpa) Cu"},(4-N,0,>)]** (5.5648 A)."” The Cu...distal
Ny distance is larger in A (3.057 A) compared to that in
[{(tmpa) Cu"},(4-N,0,>)]** (2.851 A; 1 =0.55), leading to a
TBP-like geometry in A (t = 0.71). These unique structural
features of A compared to [{(tmpa)Cu'},(y-N,0,>)]** are
presumably due to the enhanced steric encumbrance exerted
by the large pivalamido groups, the H-bonding MeOH mole-
cules, and intramolecular H-bonding modifications. For A,
Cu-N and Cu—Opxy distances of 2.0 — 2.2 and 1.967 A were

observed, respectively, both in close resemblance to
[{(tmpa) Cu"}»(4-N,0,*")]**** Most importantly, the Cu-
bound Ogy atoms are strongly H-bonded in A, with an N,.
midese+Onn distance of 2.874 A (NH,pigeee+Oun = 1.862 A).
The hyponitrito N=N and N-O distances are 1.260 and 1.356

A, respectively, in excellent agreement with previously ob-
1d,6b,12¢,12£,17,36

served and/or calculated values.

Figure 4. DFT optimized structure of A, where a MeOH mole-
cule and Numiqe are H-bonded to each Oun atom. Non-H-bonding
hydrogen atoms are omitted for clarity. Also, see the text.

Comparison of single-point energies of geometry opti-
mized structures revealed further insights into this system.
Firstly, the overall stability of A is increased by as much as 15.7
kcal/mol with the addition of the two MeOH molecules as de-
scribed above, indicating strong H-bonding interactions (Fig-
ure 4)¥ between the MeOH molecules and Ogy atoms in ad-
dition to the NH jnigee e« Onn interaction; the Opeomes s Onn dis-
tance is 2.859 A (OHpyeone++Oun = 1.882 A) and the N,
midess+Onn distance is 2.882 A (NH,pigees+Onn = 1.920 A).
This observation is in-line with the computationally observed
hydrogen bonding interactions of the hyponitrito intermedi-
ate of HCO’s that included an H-bonded active site water mol-
ecule.®®!1% Secondly, the comparison of single point energies
of A, B, N,O (), and H,O infer a 90.9 kcal/mol overall free en-

ergy change for the conversion: A = 2B + N,O(,) + H,O (sec-
ond step in Figure 1), clearly illustrating the favorable

energetics driving its spontaneity, which results in the im-
paired stability of A even in protic solvents.

In conclusion, we describe the first example of a copper-
only complete NOR model system with in-built, acidic H-
bonding functionalities, which protonates the putative hypo-
nitrite intermediate to efficiently couple "NO(y), leading to
N,O(g) production. This work underscores the critical im-
portance of fine-tuned acidities of active site components
and/or proximal water molecules (i.e., the H-bonding vs. pro-
tonation capabilities) in governing the efficient "NO ) reduc-
tive coupling in NOR. Further interrogations are warranted
for the vivid understanding of the timing of protonation
and/or redox shuttling events implicated with N-N bond for-
mation, and N-O bond cleavage.
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