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Regiocontrol of Diels-Alder Reaction of Conjugate 1-Trienol Ether
in Chiral Tropilidene with TCNE
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The Diels-Alder reaction of tetracyanoethylene (TCNE) with a
1-trienol unit in the tropilidenes at the 1,4-position was a quick
and reversible process, whereas the 3,6-addition only proceeded
in polar solvent and was irreversible.

Cycloheptatrienes (tropilidene) are useful synthons for a
variety of cycloadditions that produce bicyclic and tricyclic
compounds.! Recently, we reported a simple and handy method
to prepare optically active tropilidenes under complete regio- and
diastereo-control in high yield.2 Although all known Diels-Alder
reactions of tropilidenes with tetracyanoethylene (TCNE) yielded
the 2,5-adduct through the norcaradiene tautomers,3 TCNE
addition to the chiral tropilidenes, 1 and 2, obtained by our
process, afforded 3 and 4 of the 1,4-adducts in quantitative
yields (in chloroform at 50 °C, 15-50 h). The MO calculation
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and the NOE study on the !H NMR of 1 indicated the ester
carbonyl having an axial conformation and a relatively planar
triene unit, the structure of which reasonably explains the unique
reactivities of 1 and 2. The calculated MO also suggested the
higher reactivity at the 1,4-position versus the 3,6-position.
However, the same reactions except for the use of acetonitrile as
a solvent afforded isomers as minor products, which were
determined to be the 3,6-adducts, 5 and 6. The regiocontrol
factors of the conjugate 1-trienol ether in the Diels-Alder reaction
have not yet been clarified because of the lack of a good model
compound having a 2,3-s-cis and 4,5-s-cis conformation. By
using 1 and 2 as model compounds of the 1-trienol ether, the
regiocontrol factor and its control method for the Diels-Alder
reaction were investigated.

First, the reaction of 1 and TCNE in acetonitrile was carefully
monitored by TLC analysis. Since the amount of 5 increased
after the conversion of 1 to 3, it was assumed that 5 was the
secondary product. As a matter of fact, the reaction of 1 in
acetonitrile at the shorter reaction time (50 °C, 5 h) produced only
3 in quantitative yield. The regioisomer of 5 could be produced
through two possible ways; one is the rearrangement of 3, and
the other is a side-reaction of 1 if the formation of 3 is a
reversible process. The 1,4-adducts, 3 and 4, were stable
crystals, but these solutions gradually became mixtures of the
adducts and the tropilidenes, which indicated that the 1,4-
additions were reversible processes.

The reaction rates for the 1,4-addition and the reverse process
were determined by heating dilute solutions of 3 and 4 (4.6 mM
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Scheme 1.

for 3 and 5.0 mM for 4). The solution in CDCl3 or CD3CN was
heated in an NMR tube at 50 °C, and the ratio of the 1,4-adduct
and the tropilidene was determined by 1H NMR peak integration.
The reactions were monitored at 1 hour intervals and continued
long enough to determine the equilibration constants (30 h),
where the 3,6-adducts and the other products were not detected.
The obtained retro-Diels-Alder reaction rates (k'), equilibration
constants (K = k/k"), and addition rates (k) calculated from k' and
K are summarized in Table 1. Although both k and k' were
somewhat changed by the solvent used, the equilibration step is
clearly not responsible for the fact that the 3,6-adduct formed in
acetonitrile but not in chloroform.
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Table 1. 1,4-Addition and elimination rates of TCNE to 1 and
2 at 50 °Ca ]

1,4-adduct Solvent k/M-1s1 k' /571 K/M-1
3 chloroform-d; 1.3x10-2 2.2x10°5  6.0x102
3 acetonitrile-d3  1.9x10-2 3.6x10-5  5.3x10?
4 chloroform-d; 1.1x10-2 5.2x10°5  2.1x102
4  acetonitrile-d3  5.6x103 1.3x104  4.2x10

2 The retro-Diels-Alder rates (k') and equilibration constants (K = k/k') were
determined by 'H NMRpeak integration. The adducts 3 (4.6 mM) and 4
(5.0 mM) was heated in an NMR tube at 50 °C and measured every 1 h. The
addition rates (k) were calculated from &' and K.

The highly regio- and diastereo-differentiating 1,4-addition
was also possible using 4-phenyl-1,2,4-triazol-3,5-dione> as the
dienophile. The addition to 1 at 50 °C proceeds faster than that
with TCNE and predominantly resulted in the 1,4-adduct 7. In
this case, 7 in dilute solution (4.6 mM in acetonitrile or
chloroform) did not result in any reverse reaction even at 80 °C
(100% recovery). Thus, the quick retro-Diels-Alder reaction was
not a characteristic process for the 1-trienol ether.
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By heating a solution of 1 and TCNE in acetonitrile (70 mM
each) at 80 °C for 48 h, the predominant formation of the 3,6-
adduct 5 was achieved. Under these conditions, the 1,4-adduct
3 was immediately produced and gradually changed to § without
any detectable side-reaction. The same reaction in THF also
produced 5, but the conversion rate was much slower (3/5 =
20/1 after 24 h). On the other hand, the reactions in benzene and
chloroform did not give 5, but afforded only 3 in good yield.
The conversion of 2 to 6 in acetonitrile in quantitative yield was
also possible at 80 °C. In THF, 4 also became undetectable after
24 h, and the produced 6 then gradually decomposed. The
reaction of 2 in benzene or chloroform at this temperature did not
give 6, but resulted in a complex mixture after 24 h. The retro-
Diels-Alder reactions during the 3,6-additions should be very
slow, because 5 and 6 were completely recovered in the dilute
solution (4.6 mM) of both acetonitrile and chloroform at 80 °C

Scheme 3.
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after 48 h.

The reaction of the tropilidenes and TCNE can be concluded
as shown in Scheme 3. The 1,4-addition was the kinetically
predominant process in both polar and non-polar solvents, and
was reversible at the same temperature as the addition. It should
be noted that the diastercomer of the 1,4-adduct was not detected
even at the higher temperature (80 °C in chloroform for 48 h),
and thus, the diastereoface differentiation of the 1,4-addition
should be very high. The 3,6-addition was a slower process than
the 1,4-addition, and occurred only in a polar solvent. Since the
3,6-addition was irreversible, the adducts could be obtained as
the sole product at the higher temperature (80 °C in acetonitrile).
The solvent effect on the 3,6-addition rate can be explained by the
charge transfer character® of the collision complex of the
tropilidene and TCNE (A). Complex A was stabilized in a polar
solvent and the radical distribution at the 2-, 4- and 6-positions in
A made it possible to proceed with the 3,6-addition.

In this communication, we determined the regiocontrol
mechanism for the Diels-Alder addition of 1-trienol ether and
TCNE, and found the conditions to selectively obtain both
regioisomers. Since the obtained bicyclo[3.2.2]nonanes were
optically pure in both regioisomers, they are considered to be
useful chiral synthons.
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