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ABSTRACT

Readily available, stable, and inexpensiveN-tosylhydrazones react with arynes under mild reaction conditions to afford 3-substituted indazoles in
moderate to good yields. The reaction appears to involve a dipolar cycloaddition of in situ generated diazo compounds and arynes.

The indazole unit constitutes a key structural moiety in
pharmaceutically relevant structures that exhibits a broad
range of bioactivities.1,2 Synthesis of the indazole system
has therefore attracted much attention from the synthetic
organic chemistry community.1b,3 Recently, new and ef-
fective routes for the synthesis of indazoles utilizing aryne
[3 þ 2] dipolar cycloaddition reactions have been devel-
oped.We2,4 andYamamoto5 reported the dipolar cycload-
dition of arynes with diazo compounds to be an effective
route to indazoles, andMoses disclosed the [3þ 2] dipolar
cycloaddition of arynes with in situ generated nitrile imides
(Scheme 1).6

Despite the success of these synthetic approaches, both
methods have their drawbacks. Moses’ method is limited
to N-aryl nitrile imides and therefore can only be used to prepare 1,3-diarylindazoles. Yamamoto’s and our pre-

vious methods are limited to stable and isolable diazo
compounds, which typically contain electron-withdrawing
groups. Since simple monosubstituted diazo compounds
are unstable and difficult to handle, the simplest 3-sub-
stituted indazoles remain ironically largely inaccessible
through aryne cycloaddition chemistry. Thus, the aryne
approach to indazoles needs further refinement. Herein,
we wish to report a formal aryne [3 þ 2] annulation
route to simple 3-substituted indazoles using stable,
readily available, and inexpensive N-tosylhydrazones
as starting materials.
N-Tosylhydrazones have been recognized as precursors

to diazo compounds under basic conditions in many
transformations,7�9 including [3 þ 2] dipolar cycloaddi-
tion reactions.10 Although strong bases, such as LiOtBu11

Scheme 1. Aryne Approaches to Indazoles
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andCs2CO3,
12 are often used, the fluoride used for the in situ

generation of arynes from o-(trimethylsilyl)aryl triflates
should be sufficiently basic to generate diazo compounds
from N-tosylhydrazones in situ (Scheme 2, path A).13

From a mechanistic point of view, even if this in situ
generation of diazo compounds does not occur for what-
ever reasons, the formal [3 þ 2] annulation of arynes
through the conjugate bases of the N-tosylhydrazones
(Scheme 2, path B) looks equally promising.
Thus,we examined the reactionof anisaldehydeN-tosyl-

hydrazone (2a) with the benzyne precursor 1a under
various reaction conditions (Table 1). Three equivalents
of fluoride were employed in this reaction to provide suffi-
cient base for generation of the tosylhydrazone anion.
Upon initial screening (entries 1�4), we found that CsF
was the best fluoride source, and THF and acetonitrile
were both suitable solvents. However, we noticed that the
reaction quickly formed large amounts of a precipitate,
likely the Cs salt of the conjugate base of 2a, that inhibited
efficient stirring of the reaction. Although heating the
reaction mixture to increase the solubility led to a higher
yield in acetonitrile (compare entries 1 and 2), it failed to
improve the yield in ethereal solvents (entries 4�7). Under
these reaction conditions, the reaction afforded a complex

mixture containing the desired product 3a, the product of
N-arylation of the hydrazone (the “side product” shown in
Scheme2), andphenylp-toluenesulfinate from the reaction
of Ts� with benzyne. We next examined the effect of
adding a phase transfer catalyst14 to help dissolve the con-
jugate base of 2a. Indeed, although the additionof 10mol%
of TEBAC ([Et3NBn]þCl�) failed to improve the yield in
acetonitrile, it significantly increased the yield of3a inTHF
(compare entries 4 and 9, and 7 and 10). Further dilution
brought the yield up to 77% (entry 11), and increasing the
TEBAC to 25 mol % resulted in an 87% yield of 3a.15 To
our pleasant surprise, further N-arylation of 3awas minimal
under these reaction conditions, as opposed to the previous
diazo route.2

Having the optimal conditions in hand,we examined the
scope and limitations of thismethod.Different aryneswere
tested first (Table 2, entries 1 and 2). The symmetrical

Scheme 2. Reaction of N-Tosylhydrazones with Arynes: Dif-
ferent Mechanisms Leading to the Same Indazoles

Table 1. Reaction Optimizationa

entry F�
TEBAC

(mol %) solvent

t

(�C)
time

(h)

yield

(%)b

1 CsF 0 MeCN 50 16 45

2 CsF 0 MeCN 80 6 51

3 TBAF 0 THF rt 24 0

4 CsF 0 THF 70 24 38c

5 CsF 0 DME 85 10 37

6 CsF 0 dioxane 105 10 0

7 CsF 0 THF 90 24 38

8 CsF 10 MeCN 80 6 50

9 CsF 10 THF 70 24 61

10 CsF 10 THF 90 24 58

11d CsF 10 THF 70 24 77

12d CsF 25 THF 70 24 87

aAll reactions were carried out on 0.4 mmol of 2a in 5 mL of solvent.
TEBAC = [Et3NBn]Cl. b Isolated yield. c Incomplete conversion; 59%
of 2a recovered. d 10 mL of solvent were used.
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dimethoxybenzyne afforded the desired indazole in a
moderate 56% yield (entry 1). The unsymmetrical mono-
methoxybenzyne gave a 4.8:1 mixture of regioisomers in a
60% combined yield (entry 2). The latter example is
particularly worth mentioning, as it provides valuable
information on the reaction mechanism. It is already
known16 that reactions involving 3-methoxybenzyne can
be highly regioselective with nucleophilic attack at the
meta-position (with respect to OMe) beingmore favorable

for both electronic and steric reasons. Therefore, if the
reaction goes through the diazo intermediate (path A in
Scheme 2), one would expect formation of the 7-methoxy
regioisomer (Scheme 3), as was reported in our previous
publication.2 On the contrary, if the reaction proceeds
through the conjugate base of the N-tosylhydrazone
(path B in Scheme 2), one might expect formation of the
4-methoxy regioisomer (Scheme 3).17 As a matter of fact,
the reaction shown in entry 2, Table 2, afforded the
7-methoxy isomer as the major product18 in an ∼4.8:1
ratio. This appears to be strong evidence for possible
involvement of the diazo intermediate, although the other
route cannot be ruled out.

Table 2. Reaction Scopea

aAll reactionswere carried out on approximately 0.4mmol of hydrazone in 10mLof solvent. b Isolated yield. c 4.8:1Regioselectivity, combinedyield.
The major isomer was assigned by an NOESY experiment (see the Supporting Information).

(16) (a) Dubrovskiy, A. V.; Larock, R. C. Org. Lett. 2010, 12, 1180.
(b) Tadross, P.M.; Gilmore, C. D.; Bugga, P.; Virgil, S. C.; Stoltz, B.M.
Org. Lett. 2010, 12, 1224.
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With regard to the scope of the N-tosylhydrazones,
those derived from aromatic aldehydes give the best yields
(entries 3�8). The scope includes electron-poor (entries
4�7), electron-rich (entries 1, 2, and 8), and sterically
hindered (entries 6 and 7) aryl N-tosylhydrazones. Those
derived from heteroaromatic aldehydes, such as pyridine-
3-carbaldehyde (2h) and thiophene-2-carbaldehyde (2i),
also afforded the expected indazole products (entries 9
and 10).However, the 36%yield for the latter reactionwas
less than satisfactory (entry 10). Unfortunately, N-tosyl-
hydrazones derived from aliphatic aldehydes were not
suitable substrates. Only pivalaldehyde N-tosylhydrazone
(2j) gave a 33% yield of the desired product 3l (entry 11).
All other aliphatic substrates tested failed to provide the
anticipated indazoles. Observed side products included
simple N-arylation of the hydrazone and phenyl p-tolue-
nesulfinate. Notably, compared with N-tosylhydrazones
derived from other aliphatic aldehydes, 2j has the greatest
steric bulk adjacent to the imine carbon and, therefore,
should in theory disfavor path B (Scheme 2). Therefore, its
success might provide additional support for the postu-
lated involvement of the diazo intermediate at least for this
particular substrate, as the steric bulk may be beneficial to

the stability of the diazo intermediate. It is also worth
noting that hydrazone 2k derived from cinnamaldehyde
did not react with benzyne under the reaction conditions
but simply cyclized to form 5-phenyl-1H-pyrazole.19 Hy-
drazone 2lwith an ester group was also tested (Scheme 4).
This substrate should initially afford the adduct 3m, which
is already known2 to undergo an acyl migration to form a
more stable isomer 5. Indeed, this rearrangement pro-
ceeded smoothly and the desired product 5 could be
isolated in a 63% yield. It should be pointed out that this
ketone-derived hydrazone might be the only one that
worked in our reaction, as N-tosylhydrazones derived
from other ketones, either aromatic or aliphatic, cyclic or
open chain, failed to give the desired indazoles. Thus, the
current protocol is largely limited to N-tosylhydrazones
derived from aromatic aldehydes.

In summary, we have developed a method for the pre-
paration of 3-arylindazoles starting from arynes and readily
available, bench stable, inexpensive N-tosylhydrazones.
The reaction appears to involve in situ formation of a
diazo compound and eliminates the problem of preparing
and isolating such unstable and hazardous intermediates.
Thus, it extends our previous aryne-diazo cycloaddition
route to indazoles.
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Scheme 3. Possible ReactionMechanisms of an Unsymmetrical
Benzyne

Scheme 4. An Indazole from Additional Acyl Migration
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negative charge (�0.494 vs �0.065 for the carbon), and therefore the
reaction with a highly reactive agent, such as benzyne, should occur
more favorably at the nitrogen, rather than at the carbon.
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