August 1977 Communications 567

A recent report⁴ on the introduction of this group prompts us to publish our own simple and efficient method which we employ since a few years.

Literature preparations of O-, S-, and N-methoxymethyl derivatives generally involve the reaction of an anion with chloromethyl methyl ether. Our method and the one reported in Ref.⁴ use dimethoxymethane (methylal) as source of the methoxymethyl cation and thus avoid the use of chloromethyl methyl ether (which is carcinogenic).

Our observation⁵ that the reaction of alkyl- and alkoxyzinc bromides (1) with acetyl chloride (3, $R^2 = CH_3$) in dimethoxymethane (2) leads to the conversion of the zinc derivative 1 into a methoxymethyl derivative (4) instead of the formation of methoxymethyl acetate suggested a new methoxymethylation method which may be formulated as follows.

In this method, the zinc derivatives 1 are prepared from acidic compounds R^1 —H and an easily accessible organozinc reagent such as ethyl bromozincoacetate (BrZn—CH₂—COOC₂H₅). The formation of the methoxymethyl cation which is operative in the above reaction may rationalized by the following sequence.

$$2 R^{1}-ZnBr \implies R^{1}-Zn-R^{1} + ZnBr_{2}$$

$$R^{2}-C \stackrel{\bigcirc}{=} 0 + ZnBr_{2} \longrightarrow R^{2}-C \stackrel{\bigoplus}{=} 0 + Cl \stackrel{\bigoplus}{ZnBr_{2}}$$

$$R^{2}-C \stackrel{\bigoplus}{=} 0 + H_{3}CO-CH_{2}-OCH_{3} \longrightarrow R^{2}-C \stackrel{\bigcirc}{=} 0 + H_{2}\stackrel{\bigoplus}{C}-OCH_{3}$$

This assumption is supported by the fact that the reaction of equimolar amounts of an acyl halide (X = Cl, Br, J) with dimethoxymethane in the presence of catalytic amounts of zinc bromide affords the corresponding methyl carboxylate and halomethyl methyl ether.

$$R-C \xrightarrow{\text{O}} + H_2C \xrightarrow{\text{OCH}_3} \xrightarrow{ZnBr_2} R-C \xrightarrow{\text{O}} + H_2C \xrightarrow{\text{OCH}_3}$$

This method of synthesis of methyl carboxylates and halomethyl methyl ethers is the subject of a forthcoming publication.

The following procedure is typical.

Methoxymethyl Benzoate (4, $R^1 = C_6H_5 - CO - O$):

In a 500-ml three-necked flask fitted with a stirrer, an addition funnel, and a thermometer, zinc (6.5 g. 0.1 mol) is covered with dimethoxymethane (20 ml) and activated by addition of a few drops of pure ethyl bromoacetate. The temperature rises to 40° and the reflux is maintained by addition of a solution of ethyl bromoacetate (16.7 g. 0.1 mol) in dimethoxymethane (40 ml). At the end of the addition the mixture is heated until the zinc disappears (~ 30 min). To this stirred solution is added dropwise a solution of benzoic acid (9.77 g. 0.08 mol) in dimethoxymethane (15 ml). The H/M exchange is followed by I.R. After the reaction is complete the mixture is cooled to -5° and acetyl chloride (5.0 g.

A New Method of Methoxymethylation

François DARDOIZE, Marcel GAUDEMAR, Nicole GOASDOUE

Laboratoire de Synthèse Organométallique, Université P. et M. Curie, Bâtiment F. 4, Place Jussieu, F-75230 Paris Cedex 05, France

The methoxymethyl group is a commonly used protective group for phenols, carboxylic acids, and carboxamides^{1,2,3}.

SYNTHESIS

Table. Methoxymethyl Derivatives (4) obtained from Acidic Compounds R¹-H via Their Zinc Bromide Derivatives (1)

4	Yield ^a [%]	b.p. or m.p.	Lit. b.p. or m.p. or Molecular formula	¹ H-N.M.R. (CDCl ₃) δ [ppm] —O—CH ₃
_>O−CH₂−O−CH₃	72	b.p. 74°/15 torr	b.p. 63- 65°/8 torr ⁶	5.08	3.40
O ₂ N-()-S-CH ₂ -O-CH ₃	80	b.p. 110°/0.05 torr	C ₈ H ₉ NO ₃ S (199.2) ^b	5.02	3.40
S-CH ₂ -O-CH ₃	82	b.p. 113°/12 torr.	C ₉ H ₁₂ OS (168.2) ^b	4.9	3.40
N-CH ₂ -O-CH ₃	62	m.p. 120° (ethanol)	m.p. 120121° ⁷	5.1	3.40
O-CH ₂ -O-CH ₃	45	b.p. 130°/12 torr	C ₁₀ H ₁₂ O ₃ (180.2) ^h	5.25	3.48
СН ₂ -С О-СН ₂ -О-СН ₃	85	b.p. 73°/0.1 torr	$C_{10}H_{12}O_3 (180.2)^b$	5.20	3.34
0-CH ₂ -0-CH ₃	76	b.p. 110°/12 torr	$C_9H_{10}O_3$ (166.2) ^b	5.45	3.50
O-CH ₂ -O-CH ₃	78	b.p. 65°/0.01 torr	b.p. 153°/32 torr ⁸	5.52	3.55
CH ₃ O CH ₂ O CH ₃ O CH ₂ O CH ₃	79	b.p. 45°/12 torr	C ₇ H ₁₄ O ₃ (146.2) ^b	5.20	3.42
H ₃ C-C O CH-CO-CH	68	m.p. 117°	C ₄ H ₃ O ₃ (104.1) ^b	5.10	3.38
BrCH ₂ -C O O-CH ₂ -O-CH ₃	80	b.p. 79°/11 torr	C ₄ H ₇ BrO ₃ {183.0) ⁶	5.22	3.45
H ₃ C-CH ₂ -CH-C O O-CH ₂ -O-CH ₃	88	b.p. 90°/13 torr	$C_6H_{11}BrO_3 (211.1)^b$	5.22	3.42
Br C≡C−CH ₂ −O−CH ₃	56 ^c	b.p. 106°/12 torr	$C_{10}H_{10}O$ (146.2) ^b	4.20	3.35

a Yield of isolated pure product; the yields are not optimized.

0.08 mol) is added dropwise (with stirring) at such a rate that the temperature does not exceed 0°. Stirring is continued for 2 h and the temperature allowed to reach 20-25°. Then, a 1:1 mixture (200 ml) of conc. aqueous ammonia and saturated aqueous ammonium chloride is added. The mixture is extracted with ether (3×100 ml), the extract washed with saturated sodium chloride solution, and dried with magnesium sulfate. The solvent is evaporated and the residue distilled in vacuo; yield: 12.2 g (76%); b.p. 110°/12 torr.

Methyl Benzoate:

A solution of benzoyl chloride (0.1 mol) and anhydrous zinc bromide (2.0 g) in dimethoxymethane (60 ml) is stirred at 44° for 6 h. The mixture is poured into cold water (300 ml), extracted with ether (3×100 ml), and dried with magnesium sulfate. The ether is evaporated and the residue distilled to give methyl benzoate; yield: 12.8 g (94%).

Received: February 16, 1977

b New compounds. The microanalyses showed the following maximum deviations from the calculated values: C, ±0.1%; H, ±0.3% Br. $\pm 0.5\%$; S. $\pm 0.35\%$

^{° 40%} unreacted phenylacetylene was recovered.

¹ J. F. W. McOmie, Adv. Org. Chem. 3, 191 (1963).

² G. Stork, Prostaglandin Synthesis from Carbohydrate Compounds, Conference in Paris, January 12, 1977.

³ U. Schöllkopf, H. Beckhaus, Angew. Chem. 88, 296 (1976); Angew. Chem. Int. Ed. Engl. 15, 293 (1976).

⁴ J. P. Yardley, H. Fletcher, Synthesis 1976, 244.

⁵ J. Curé, M. Gaudemar, Bull. Soc. Chim. Fr. 1970, 2962.

⁶ R. L. Edwards, I. Mir, J. Chem. Soc. [C] 1967, 411.

⁷ F. Sachs, Ber. dtsch. chem. Ges. 31, 1230 (1898).

⁸ German Patent (DRP) 137 585 (1902), Bayer & Co.: Chem. Zentralblatt 1903 1, 112.