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Abstract: The Lamé polynomials naturally arise when separating variables in Laplace’s
equation in elliptic coordinates. The products of these polynomials form a class of
spherical harmonics, which are joint eigenfunctions of a quantum completely integrable
(QCI) system of commuting, second-order differential operatorsP0 = �, P1, . . . , PN−1
acting onC∞(SN ). These operators naturally depend on parameters and thus constitute
an ensemble. In this paper, we compute the limiting level-spacings distributions for the
zeroes of the Lamé polynomials in various thermodynamic, asymptotic regimes. We
give results both in the mean and pointwise, for an asymptotically full set of values of
the parameters.

1. Introduction

Fix N + 1 distinct, positive real numbers 0< α0 < · · · < αN . Given Cartesian
coordinates(z1, . . . , zN+1) ∈ R

N+1, consider the partial differential operators

Pk :=
∑
i<j

S
ij
k (α0, . . . , αN )

(
zi

∂

∂zj

− zj

∂

∂zi

)2

; k = 0, . . . , N − 1 (1)

acting onC∞(SN ). Here,Sij
k denotes thekth elementary symmetric polynomial in the

α parameters withαi andαj deleted. It is easy to check that

[Pi, Pj ] = 0 for all i, j = 0, . . . , N − 1.

Consequently, since thePj ’s are jointly elliptic, they possess a Hilbert basis of joint
eigenfunctions. SinceP0 is just the constant curvature spherical Laplacian, these eigen-
functions form a class of spherical harmonics, the so-calledgeneralized Lamé harmonics

� Supported in part by an Alfred P. Sloan Research Fellowship and NSERC grant OGP0170280.
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[T1]. These systems constitute important examples of quantum completely integrable
systems and they have as complex analogues the Gaudin spin-chains of various types
[HW, K]. The purpose of this note is to derive asymptotic formulas for the level-spacings
distributions of the zeroes of these spherical harmonics. To describe our results in more
detail, we begin by noting that in terms of appropriate (elliptic-spherical [HW, T1, T2])
parametrizing coordinates(u1, . . . , uN ) ∈ (α0, α1) × · · · × (αN−1, αN ) onS

N , and up
to constant multiples, the joint eigenfunctions ofP0, . . . , PN−1 can be written in the
form:

ψ(u1, . . . , uN ) =
N∏

j=1

Sm(
√

uj − α0, . . . ,
√

uj − αN ) · φ(uj ).

Here, φ is a polynomial, andSm(x0, . . . , xN ); m = 0, . . . , N + 1 denotes themth

elementary symmetric function onN + 1 variables. Furthermore, the functionψ(x) :=
Sm(

√
x − α0, . . . ,

√
x − αN ) · φ(x) is a solution of the ODE:

N∏
ν=0

(x − αν)
d2ψ

dx2 + 1

2

N∑
ν=0

∏
λ
=ν

(x − αλ)
dψ

dx
+ C(x)ψ = 0, (2)

where,C(x) is a polynomial of orderN − 1 depending linearly on the joint eigenvalues
(λ0, . . . , λN−1) ∈ Spec(P0, . . . , PN−1). The different species [WW] of harmonics are
indexed bym = 0, . . . , N +1. Although for simplicity, we consider here the case where
m = 0, our main result (Theorem 1.1) can be proved for the other cases corresponding
to m = 1, . . . , N + 1 in a similar fashion. Whenm = 0, the solutionsψ(x) are called
generalized Lamé polynomials.

Consider

E(k) := {φ(k)
1 , . . . , φ

(k)
j (k)},

the set of Lamé polynomials of degreek. By the standard theory of spherical harmonics
[WW] and the fact that the corresponding Lamé harmonics form a Hilbert basis, we
know thatj (k) = σ(N, k) := (N+k−1)!

k!(N−1)! . Let θ
(k)
i,1 ≤ · · · ≤ θ

(k)
i,k denote the (real) zeroes

of the polynomial,φ(k)
i , wherei = 1, . . . , σ (N, k).

In our main result (Theorem 1.1), we compute the asymptotic weak limit for the level
spacings distribution averaged over the set,E(k), of kth order Lamé polynomials. More
precisely, consider

dρAV
LS (x; N, k, α) := 1

σ(N, k)

σ(N,k)∑
l=1

1

k − 1

k−1∑
j=1

δ
(
x − k(θ

(k)
l,j+1(α) − θ

(k)
l,j (α))

)
, (3)

whereα ∈ "N and

"N := {(α0, . . . , αN ) ∈ [0, 1]N+1; α0 < α1 < · · · < αN−1 < αN }. (4)

We henceforth put the normalized Lebesgue measured−α := (N + 1)!dα on "N , so
that meas("N ) = 1. In order to state our first result, we will also need to introduce the
integrated, averaged level-spacings distribution:

dµLS(x; N, k) :=
∫

"N

dρAV
LS (x; N, k, α) d−α. (5)
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Theorem 1.1. (i) Fix 0 < ε < 1 and assume thatk ∼ N1−ε asN → ∞. Then,

w − lim
N→∞ dµLS(x; N, k) = e−xdx.

(ii) Suppose thatk(N) satisfies the hypotheses of part(i). Then, for any0 < δ < ε there
exist a measurable subsetJ N ⊂ "N with meas(J N ) ≥ 1− N−δ, such that for any
α ∈ J N ,

w − lim
N→∞ dρAV

LS (x; N, k, α) = e−xdx.

In both (i) and (ii) , the weak-limit is taken in the dual space toC0
0([a, b]), where

0 ≤ a < b < ∞.

Remarks.(i) In recent work, Bleher, Shiffman and Zelditch [BSZ 1,2] have determined
the asymptotics of various measures associated with the distribution of zeroes of eigen-
sections of Toeplitz operators. The Lamé ensemble together with its complex analogues
(the Gaudin spin chains) can be described in the Toeplitz framework [K]. However, in
[BSZ 1,2] the averaging is carried out over a much larger ensemble: namely,all suitably
normalized bases of Toeplitz eigensections. Most such bases are not quantum completely
integrable and consequently, the situation considered in this paper is quite different from
that in [BSZ 1,2]. The main point here is that we are really averaging over a compara-
tively small ensemble indexed by the parametersα ∈ "N and the elements of which are
all quantum completely integrable.

(ii) There are two asymptotic parameters that enter into our analysis here:k, the degree
of the joint eigenfunctions, andN , the dimension of the base space, which in this case is
justSN . So, Theorem 1.1 above is really a hybrid asymptotic result about the zeroes of the
joint eigenfunctions of thePj ’s on spheres of increasing dimension where we assume
that the number of zeroes,k, satisfiesk(N) ∼ N1−ε as N → ∞. This asymptotic
regime can be thought of as a kind of thermodynamic limit. It would also be of interest
to determine what happens in other asymptotic ranges where the number of zeroes is
permitted to grow at faster rates asN → ∞. In particular, one would like to know what
happens in the purely semiclassical regime, whereN is fixedandk → ∞. We hope to
address these points in future work.

(iii) As the referee has pointed out, it would be of considerable interest to determine
how the actual zeroes of the Lamé harmonics are distributed in the sense of a Riemann
measure onSN itself. A natural starting point would be to look at the density of states
measures (see [ShZ, NV]). In light of our results in this paper, the zeroes should, at least
on average, behave like random variables in the asymptotic regime wherek(N) ∼ N1−ε .
Consequently, we believe that the density of states should on average tend to uniform
measure onSN , but at present we do not know how to prove this. We plan to address
this question for the Lamé harmonics as well as the more general complex XXX Gaudin
spin chains in an upcoming paper.

2. The Lamé Differential Equation

We now give a brief introduction to the Lamé equation following the classical presenta-
tion in Whittaker and Watson [WW], where this equation is introduced via the theory of
ellipsoidal harmonics. In his treatise on heat conduction in an ellipsoidal body, G. Lamé
was led to consider the class of homogeneous, harmonic polynomials onR

N+1 that
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vanish on a family of confocal quadrics. There is an analogous construction of spherical
harmonics which we will now describe. Pick a set{α0, . . . , αN } of positive real con-
stants, all distinct, and ordered in increasing order. Define, for some real parameterθ , the
diagonal matrixAθ = diag

(
(θ − α0)−1, . . . , (θ − αN )−1

)
. The problem then reduces

to finding, for any positive integerk and multi-indexβ = (β0, . . . , βN ) ∈ {0, 1}N+1, k

real numbersθ1, . . . , θk for which the Niven’s functions

fβ(X) = Xβ
k∏

j=1

(Aθj
X, X), X ∈ R

N+1, (6)

are solutions of Laplace’s equation�(fβ) = 0. The restrictions of thefβ ’s to S
N yield

an important class of spherical harmonics: thegeneralized Lamé harmonics. Clearly, the
functionsfβ(X) vanish on a family of confocal cones. Moreover, after substitution of
the ansatz into Laplace’s equation, a straightforward computation shows that the relevant
θj are obtained as solutions of the equations

N∑
ν=0

1

θj (α; l) − αν

+
N∑

ν=0

2βν

θj (α; l) − αν

+
∑
i 
=j

4

θj (α; l) − θi(α; l)
= 0 for j = 1, . . . , k.

(7)

In the literature, these equations are commonly referred to as the “Bethe Ansatz” equa-
tions. Consequently, if we denote the solutions of (7) byθ1, . . . , θk, it is not hard to see
that the functions

ψ(x) =
N∏
ν

(x − αν)βν/2
k∏

j=1

(x − θj ), βν ∈ {0, 1} (8)

satisfy the second order differential equation given by

N∏
ν=0

(x − αν)
d2ψ

dx2 + 1

2

N∑
ν=0

∏
µ
=ν

(x − αµ)
dψ

dx
+ C(x)ψ = 0, (9)

whereC(x) is a polynomial of degreeN − 1 that can be computed explicitly. This is
exactly Eq. (2) of the introduction, and is known as thegeneralized Lamé differential
equation. In the special case where the multi-indexβ = 0, it follows that thekth degree
polynomialφ(x) = ∏k

j=1(x − θj ) is a solution of the Lamé equation. Following the
terminology adopted previously, we refer to these asLamé polynomials. Restricting our
attention to theN -sphereSN , we can use elliptic-spherical [HW, T1, T2] coordinates
u = (u1, . . . , uN ) ∈ (α0, α1) × · · · × (αN−1, αN ) to rewrite Niven’s function in the
form

fβ(u1, . . . , uN ) = c

N∏
ν=0

N∏
j=1

(uj − αν)βν/2φ(uj ), (10)

wherec is some constant depending only onα0, . . . , αN andφ(u) = ∏k
j=1(u − θj ) .

The functionsψ(u1, . . . , uN ) in the introduction are simply linear combinations of the
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fβ ’s and consequently, they are solutions of the eigenvalue problem for the Laplace’s
operator onSN written in terms of elliptic-spherical coordinates; that is

N∑
j=1

4∏
i 
=j (uj − ui)

[√
U(uj )

∂

∂uj

(√
U(uj )

∂ψ

∂uj

)]
= −λ0ψ,

whereU(x) = ∏N
ν=0(x − αν). The separated equations have the form

N∏
ν=0

(x − αν)
d2ψ

dx2 + 1

2

N∑
ν

∏
µ
=ν

(x − αµ)
dψ

dx
+ 1

4

N−1∑
j=0

λN−j−1xj

ψ = 0, (11)

where the separation constantsλ1, . . . , λN−1 are the joint eigenvalues of the partial
differential operatorsP0, . . . , PN−1 defined in (1). Equation (11) is exactly the Lamé
differential equation (2) considered in the introduction.

3. The Heine–Stieltjes Theorem

One of the key steps in the proof of Theorem 1.1 is based on a result originally obtained
by M. Heine [H]. Shortly afterwards, Stieltjes [S] improved Heine’s result in the special
case of differential equations of Lamé’s type, the case that we consider here. For a
complete proof, we refer the reader to Szegö [Sz].

Theorem 3.1 (Heine–Stieltjes). LetA(x) be the polynomial of degreeN + 1 given by

A(x) = (x − α0) · (x − α1) · · · (x − αN ),

where0 < α0 < α1 < · · · < αN andB(x) is a polynomial of degreeN satisfying the
condition

B(x)

A(x)
= ρ0

x − α0
+ · · · + ρN

x − αN

,

for given numbersρν > 0, ν = 0, . . . , N . Then, there are exactlyσ(N, k) = (N+k−1)!
k! (N−1)!

polynomialsC(x) of degreeN − 1 for which the differential equation

A(x)
d2φ

dx2 + 2B(x)
dφ

dx
+ C(x)φ = 0 (12)

has a polynomial solution of degreek > 0. In addition, for each of theσ(N, k) solutions,
φ(x), the zeroes are simple and uniquely determined by their distribution in the intervals
(α0, α1), . . . , (αN−1, αN ).

Note that the Lamé equation (11) is a particular case of the differential equation
(12) appearing in the statement of the theorem: Indeed, in the Lamé case, we have that
ρν = 1/4 for ν = 0, . . . , N . Taking into account the Heine–Stieltjes result, we denote
the zeroes ofφ(x) by θ1(α; l) ≤ · · · ≤ θk(α; l), whereα := (α0, . . . , αN ), whereas
l = (l1, . . . , lk); 1 ≤ l1 ≤ · · · ≤ lk ≤ N denotes the configuration of the zeroes. By
this we mean thatθ1(α; l) is the smallest zero lying in the interval(αl1−1, αl1), the next
zeroθ2(α; l) is contained in the interval(αl2−1, αl2) and so on.

Although we will not explicitly use the following result in this paper, it is of inde-
pendent interest and so we include it here for future reference:
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Lemma 3.2. For any given configurationl = (l1, . . . , lk), the zeroesθ1(α; l), . . . ,
θk(α; l) are differentiable functions ofα ∈ "N .

Proof. The proof is based on the argument given in [Sh]. Differentiating the BetheAnsatz
equations (7) with respect to theθ variables, we form the Jacobian matrixB = (bij )

given by

bij =
{−∑N

ν=0
ρν

(θj −αν)2 − ∑
m
=i

1
(θj −θm)2 if i = j

1
(θj −θi )

2 if i 
= j.

By a standard result in matrix theory (Gerˆsgorin’s Theorem) it follows that all the
eigenvalues ofB are strictly negative since ifλ is an eigenvalue ofB, then for some
j ∈ {1, 2, . . . , k},

λ ≤ bjj +
∑
i 
=j

|bij | = −
N∑

ν=0

ρν

(θj − αν)2 < 0.

Therefore, the determinant ofB is nonzero, so we can apply the implicit function theorem
to conclude the proof. ��

4. Level Spacings Distribution

Consider the Lamé system consisting ofN + 1 particles located atα0, . . . , αN with
0 < α0 < · · · < αN < 1 together with thek zeroesθ1(α; l) ≤ · · · ≤ θk(α; l) of
the polynomial solutionφ(x) of the differential equation (12). Recall that, we use the
notationθj (α; l) to designate thej th zero in configurationl = (l1, . . . , lk) with respect
to parametersα = (α0, . . . , αN ). As a consequence of Heine–Stieltjes Theorem, we
have that:

dρAV
LS (x; N, k, α) = 1

σ(N, k)

∑
1≤l1≤···≤lk≤N

1

k − 1

·
k−1∑
j=1

δ
(
x − k

(
θj+1(α; l) − θj (α; l)

))
,

(13)

and so,

dµLS(x; N, k) :=
∫

"N

dρAV
LS (x; N, k, α) d−α

= 1

σ(N, k)

∑
1≤l1≤···≤lk≤N

1

k − 1

k−1∑
j=1

∫
"N

δ(x − k(θj+1(α; l) − θj (α; l))) d−α. (14)

4.1. Proof of part (i) of Theorem 1.1.The proof is somewhat long and computational,
so we divide it into several steps. For notational simplicity, we assume here that[a, b] =
[0, 1] andφ ∈ C1

0([0, 1]). The argument for more general non-negative intervals[a, b]
follows in the same way.
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Step 1.We first show thatdµLS(x; N, k) can be asymptotically approximated by fairly
simple integrals that do not depend on the explicit formulas for the zeroes
θ1(α; l), . . . , θk(α; l). More precisely, we claim that:

dµLS(x; N, k)(φ)

= 1

σ(N, k)

∑
1≤l1≤···≤lk≤N

1

k − 1

k−1∑
j=1

∫
"N

φ(k(αlj+1 − αlj )) d−α + O
(

k

N

)
. (15)

To obtain the estimate in (15), we make a first-order Taylor expansion in (14) around
k(αlj+1 − αlj ) to get:

dµLS(x; N, k)(φ) =
1

σ(N, k)

∑
1≤l1≤···≤lk≤N

1

k − 1

k−1∑
j=1

∫
"N

φ(k(αlj+1 − αlj )) d−α + E1(N, k, φ), (16)

where the error termE1(N, k, φ) is given by,

E1(N, k, φ) = 1

σ(N, k)

∑
1≤l1≤···≤lk≤N

k

k − 1

·
k−1∑
j=1

∫
"N

φ′(kξj (α))
[(

θj+1(α; l) − αlj+1

) − (
θj (α; l) − αlj

)]
d−α,

with ξj (α) ∈ (0, 1). We need to show thatE1(N, k, φ) = O (
k
N

)
.

First, we start with a simple calculus lemma:

Lemma 4.1. For any0 ≤ i ≤ j ≤ N and multi-indicesβ = (β1, β2) ∈ N
2 \ {(0, 0)},

we have

∫
"N

α
β1
i α

β2
j d−α =

∏β1
l=1(i + l)

∏β2
l=1(β1 + j + l)∏|β|

l=1(N + 1 + l)
,

where we define products of the form
∏0

l=1 to be equal to1 and|β| := β1 + β2.
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Proof of Lemma 4.1.A direct computation with iterated integrals gives∫
"N

α
β1
i α

β2
j d−α =

∫
0<α0<···<αN <1

α
β1
i α

β2
j d−α

= (N + 1)!
∫ 1

0

∫ αN

0
· · ·

∫ α1

0
α

β2
j α

β1
i dα0 · · · dαN

= (N + 1)!
i!

∫ 1

0

∫ αN

0
· · ·

∫ αi+1

0
α

β2
j α

β1+i
i dαi · · · dαN

= (N + 1)!
i!(β1 + i + 1) . . . (β1 + j)

∫ 1

0

∫ αN

0
· · ·

∫ αj+1

0
α

β2+β1+j
j dαj · · · dαN

= (N + 1)!
i! (β1 + i + 1) . . . (β1 + j) (β1 + β2 + j + 1) . . . (β1 + β2 + N + 1)

=
∏β1

l=1(i + l)
∏β2

l=1(β1 + j + l)∏|β|
l=1(N + 1 + l)

. ��

As a consequence of Lemma 4.1, we see that the integrals of consecutive monomials
over the truncated positive Weyl chamber"N are asymptotically equal asN → ∞.
Combined with the Heine–Stieltjes result, this fact leads to the following simple corollary
of Lemma 4.1:

Corollary 4.2. For any configurationl = (l1, . . . , lk) and integerj satisfying1 ≤ j ≤
k, we have that ∫

"N

∣∣θj (α; l) − αlj

∣∣ d−α = O(N−1) (17)

uniformly ink.

Proof of Corollary 4.2.As a consequence of the Heine–Stieltjes theorem, we know that
given a configurationl, thej th zero necessarily lies in the interval(αlj −1, αlj ); that is,

αlj −1 ≤ θj (α; l) ≤ αlj .

On the other hand, by Lemma 4.1,
∫

"N αj d−α = j+1
N+2. Thus,

∫
"N

∣∣θj (α; l) − αlj

∣∣ d−α ≤
∫

"N

(
αlj − αlj −1

)
d−α

= lj + 1

N + 2
− lj

N + 2

= O(N−1). ��
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Given Corollary 4.2, we can now estimate the error term,E1(N, k, φ), in (11) as follows:

E1(N, k, φ) ≤ 1

σ(N, k)

∑
1≤l1≤···≤lk≤N

k

k − 1

·
k−1∑
j=1

(∫
"N

∣∣θj+1(α; l) − αlj+1

∣∣ d−α+
∫

"N

∣∣θj (α; l) − αlj

∣∣ d−α

)
‖φ ‖C1

= O
(

k

N

)
.

This proves the identity in (15) and so Step 1 is complete.

Step 2.The next step involves computing the first term on the RHS of (15) explicitly.
We claim that:

1

σ(N, k)

∑
1≤l1≤···≤lk≤N

1

k − 1

k−1∑
j=1

∫
"N

φ
(
k
(
αlj+1 − αlj

))
d−α

= k

N + k − 1
φ(0) (18)

+ N + 1

σ(N, k)

N−2∑
m=0

σ(N − m − 1, k − 1)

∫ 1

0
φ(kx)binom(N, m; x) dx

where binom(N, m; x) := N !
m!(N−m)!x

m(1− x)N−m for x ∈ [0, 1]. In order to prove the
identity in (18), we start with a simple lemma which involves a successive application
of the Fubini theorem.

Lemma 4.3. For any integersi, j with 0 ≤ i < j ≤ N , we have that∫
"N

φ
(
k
(
αj − αi

))
d−α = (N + 1)

∫ 1

0
φ(kx)binom(N, j − i − 1; x) dx. (19)

Proof of Lemma 4.3.Given the definition of"N , it is clear that∫
"N

φ
(
k
(
αj − αi

))
d−α = (N + 1)!

∫ 1

0

∫ αN

0
· · ·

∫ α1

0
φ
(
k
(
αj − αi

))
dα0 · · · dαN .

By repeated application of Fubini’s theorem, we can ensure that the iterated integrals
with respect toαi andαj are carried out last. More precisely, we apply Fubini’s theorem
on the double integral with respect toαj andαj+1 to reverse the order of integration.
We then repeat the same procedure for the double integral with respect toαj andαj+2
and so on, until we bring the last integration with respect toαj . This gives∫

"N

dα =
∫ 1

0

∫ 1

αj

∫ αN

αj

· · ·
∫ αj+2

αj

∫ αj

0
· · ·

∫ α1

0
dα0 . . . dαj−1dαj+1 . . . dαN−1dαN dαj .
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We proceed in a similar manner forαi to finally obtain:∫
"N

dα =
∫ 1

0

∫ 1

αj

· · ·
∫ αj+2

αj

∫ αj

0

∫ αj

αi

· · ·
∫ αi+2

αi

∫ αi

0
· · ·

∫ α1

0
dα0 . . .

. . . dαi−1dαi+1 . . . dαj−1dαidαj+1 . . . dαN dαj

=
∫ 1

0

∫ αj

0

∫ 1

αj

· · ·
∫ αj+2

αj

∫ αj

αi

· · ·
∫ αi+2

αi

∫ αi

0
· · ·

∫ α1

0
dα0 . . . d̂αi . . .

. . . d̂αj . . . dαN dαidαj ,

where d̂αi , d̂αj means that these variables are omitted in the product measure
dα0 · · · dαN . We then carry out the iterated integration over the firstN − 2 variables
α0 < α1 < · · · < αi−1 < αi+1 < · · · < αj−1 < αj+1 < · · · < αN to get∫

"N

d−α = (N + 1)!
∫ 1

0

∫ αj

0

αi
i

i!
(αj − αi)

j−i−1

(j − i − 1)!
(1 − αj )N−j

(N − j)! dαidαj .

Finally, we make the change of variablesx = αj − αi , y = αj and integrate by partsi
times with respect toy. It follows that∫

"N

φ
(
k
(
αj − αi

))
d−α =(N + 1)!

∫ 1

0
φ(kx)

xj−i−1

(j − i − 1)!
(1 − x)N−(j−i−1)

(N − (j − i − 1))! dx

= (N + 1)

∫ 1

0
φ(kx)binom(N, j − i − 1; x)dx.

This completes the proof of Lemma 4.3.��
To complete Step 2, we need to compute the asymptotic averages (18) of the integrals∫

"N φ(k(αlj+1 − αlj )) d−α. First, we start with a simple combinatorial lemma. In order
to state the lemma, it is useful to introduce some notation at this point: We denote by
Sj (m) the set of all configurationsl = (l1, . . . , lk) for which lj+1 − lj = m. As the
following lemma shows, the cardinality ofSj (m) is independant ofj .

Lemma 4.4. For eachm = 0, . . . , N −1and eachj = 1, . . . , k, the number ofk-tuples
(l1, . . . , lk) with 1 ≤ l1 ≤ · · · ≤ lk ≤ N and satisfyinglj+1 − lj = m is given by

σ(N − m, k − 1) = (N − m + k − 2)!
(k − 1)! · (N − m − 1)! .

Proof of Lemma 4.4.By identifying thej th and thej + 1st zeroes, we are reduced to the
problem of distributingk − 1 zeroes amongst the remainingN − m slots. Clearly, this
number is given byσ(N − m, k − 1). ��

As a consequence of Lemma 4.4,

1

σ(N, k)

∑
1≤l1≤···≤lk≤N

1

k − 1

k−1∑
j=1

∫
"N

φ
(
k
(
αlj+1 − αlj

))
d−α

= 1

(k − 1)

1

σ(N, k)

N−1∑
m=0

k−1∑
j=1

∑
l∈Sj (m)

∫
"N

φ
(
k
(
αlj+1 − αlj

))
d−α.
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In order to apply Lemma 4.3, we need to treat the two cases wherem = 0 andm > 0
separately. Since by Lemma 4.4, we know thatSj (0) = σ(N, k − 1), it is clear that

1

σ(N, k)

∑
1≤l1≤···≤lk≤N

1

k − 1

k−1∑
j=1

∫
"N

φ
(
k
(
αlj+1 − αlj

))
d−α (20)

= σ(N, k − 1)

σ (N, k)
φ(0) + 1

(k − 1)

1

σ(N, k)

N−1∑
m=1

k−1∑
j=1

∑
l∈Sj (m)

∫
"N

φ
(
k
(
αlj+1 − αlj

))
d−α.

On one hand, we can apply Lemma 4.3 to the RHS of (20) to get

σ(N, k − 1)

σ (N, k)
φ(0)

+ 1

(k − 1)

1

σ(N, k)

N−1∑
m=1

k−1∑
j=1

∑
l∈Sj (m)

∫
"N

φ
(
k
(
αlj+1 − αlj

))
d−α = k

N + k − 1
φ(0)

+ N + 1

(k − 1)σ (N, k)

N−1∑
m=1

k−1∑
j=1

∑
l∈Sj (m)

∫ 1

0
φ(kx)binom(N, lj+1 − lj − 1; x) dx. (21)

On the other hand, an application of Lemma 4.4 allow us to remove the summations
overj andl in (21), so that

N + 1

(k − 1)σ (N, k)

N−1∑
m=1

k−1∑
j=1

∑
l∈Sj (m)

∫ 1

0
φ(kx)binom(N, lj+1 − lj − 1; x) dx

= N + 1

σ(N, k)

N−2∑
m=0

σ(N − m − 1, k − 1)

∫ 1

0
φ(kx)binom(N, m; x)dx. (22)

The identity in (18) follows from (21) and (22) and so, Step 2 is complete.

Step 3.Summing up, as a result of Steps 1 and 2 we have shown that:

dµLS(x; N, K)(φ) =
N + 1

σ(N, k)

N−2∑
m=0

σ(N − m − 1, k − 1)

∫ 1

0
φ(kx)binom(N, m; x) dx + O

(
k

N

)
. (23)

Our next task is to further simplify the expression on the RHS of (23) by appealing
to the theory of Bernstein approximations [D]. First, we need to estimate the quotient
σ(N−m−1,k−1)

σ (N,k)
appearing on the RHS of (23). For this, it is convenient to consider two

cases:
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Case 1. (m << (N/k)1+β); 0 < β < 1. Under this assumption,

σ(N − m − 1, k − 1)

σ (N, k)
= k

N + k − 1

k−2∏
j=0

(
1 − m + 1

N + j

)

= k

N + k − 1
exp

k−2∑
j=0

log

(
1 − m + 1

N + j

)
= k

N + k − 1
exp

k−2∑
j=0

log

(
1 − m + 1

N
· 1

1 + j
N

)
= k

N + k − 1
exp

−
k−2∑
j=0

m + 1

N
· 1

1 + j
N

+ O
(

km2

N2

) .

(24)

After some further simplification involving Taylor expansions, we get that

σ(N − m − 1, k − 1)

σ (N, k)

= k

N + k − 1
exp

−
k−2∑
j=0

m + 1

N

(
1 + O

(
j

N

))
+ O

(
km2

N2

)
= k

N + k − 1
exp

[
− (k − 2)(m + 1)

N
+ O

(
mk2

N2

)
+ O

(
km2

N2

)]
.

= k

N + k − 1
exp

(−mk

N

)(
1 + O

(
mk2

N2

)
+ O

(
km2

N2

))
.

Finally, using the fact thatxpe−x = Op(1); for all x ≥ 0, we get

σ(N − m − 1, k − 1)

σ (N, k)
= k

N + k − 1
exp

(−mk

N

)
+ O

(
k2

N2

)
+ O

(
1

N

)
. (25)

Case 2. (m >> (N/k)1+β). In this case, we can choose 0< β < 1−ε
ε

so that with
appropriate constantsC1, C2 > 0,

σ (N − m − 1, k − 1)

σ (N, k)
= k

N + k − 1

k−2∏
j=0

(
1 − m + 1

N + j

)

≤ k

N + k − 1

k−2∏
j=0

(
1 − C1

Nβ

k1+β

)
= O

(
e−C2(N/k)β

)
.

(26)

Substituting the estimates (25) and (26) into (23) and using the fact that

N∑
m=0

binom(N, m; x) = 1 and
∫ 1

0
φ(kx)dx = O(k−1)
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gives:

dµLS(x; N, K)(φ) = k(N + 1)

N + k − 1

N−2∑
m=0

e− mk
N

·
∫ 1

0
φ(kx)binom(N, m; x) dx + O

(
k

N

)
+ O

(
1

k

)
= k(N + 1)

N + k − 1

N∑
m=0

e
−mk

N

·
∫ 1

0
φ(kx)binom(N, m; x) dx + O

(
k

N

)
+ O

(
1

k

)
(27)

since the terms form = N − 1 andm = N are bounded by 1/N . Recall that for a
functionf (x) defined on[0, 1], theN th degree Bernstein polynomial off (x) is defined
to be [D]:

BN (f ; x) =
N∑

m=0

f
(m

N

)
binom(N, m; x).

It is easy to see that in the special case where exp−k(x) := e−kx , there is a concise
closed-form expression forBN (exp−k; x); indeed,

BN (exp−k; x) =
(
xe− k

N + (1 − x)
)N

. (28)

From the identity in (28) we easily derive the following:

Lemma 4.5. For x ≥ 0, we have that

BN (exp−k; x) = e−kx + O
(

k

N

)
. (29)

Proof of Lemma 4.5.Expande− k
N in a second-orderTaylor series and use the identity (28)

directly to get

BN (exp−k; x) =
[
1 + x

(
e− k

N − 1
)]N =

[
1 − kx

N

(
1 + O

(
k

N

))]N

.

From the inequality

0 ≤ e−x −
(
1 − x

N

)N ≤ x2e−x

N
,

and the fact thatxpe−x = Op(1) for all x ≥ 0, it follows that

BN (e−kx; x) = e−kx

(
1 + O

(
k2x

N

))
+ O(N−1) = e−kx + O

(
k

N

)
.

This completes the proof of the lemma.��
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Substituting (29) into (27), we finally obtain

dµLS(x; N, K)(φ) = k(N + 1)

N + k − 1

∫ 1

0
φ(kx)BN (exp−k; x) dx + O

(
k

N

)
+ O

(
1

k

)
= k(N + 1)

N + k − 1

∫ 1

0
φ(kx)e−kx dx + O

(
k

N

)
+ O

(
1

k

)
=

∫ 1

0
φ(x)e−x dx + O

(
k

N

)
+ O

(
1

k

)
. (30)

By noting thatC1
0([0, 1]) is dense inC0

0([0, 1]), this completes the proof of Theo-
rem 1.1 (i). ��

4.2. Proof of part (ii) of Theorem 1.1.For convenience, we henceforth denote by
∑

l,l′
the double sum over the indices 1≤ l1 ≤ · · · ≤ lk ≤ N and 1≤ l′1 ≤ · · · ≤ l′k ≤ N .
We also defineφk(x) := φ(kx). First, we claim that∫

"N

∣∣∣dρAV
LS (x; N, k, α)(φ)

∣∣∣2 d−α

= 1

σ 2(N, k)

∑
l,l′

1

(k − 1)2

k−1∑
i,j=1

∫
"N

φk(αlj+1 − αlj )φk(αl′i+1 − αl′i ) d−α + O
(

k

N

)
.

(31)

To obtain (31), we essentially repeat the argument of Step 1 in Sect. 4.1. That is, we
expand each of the functionsφk(θj+1(α; l)− θj (α; l)) andφk(θi+1(α; l′)− θi(α; l′)) in
a first-order Taylor series around the points(αlj+1 − αlj ) and(αl′i+1 − αl′i ) respectively.

First, we claim that the terms involving the derivative ofφk are allO (
k
N

)
. Indeed, the

Heine–Stieltjes Theorem and Lemma 4.1 imply that∫
"N

∣∣∣θj (α, l) − αlj

∣∣∣ ∣∣θi(α, l′) − αl′i
∣∣ d−α ≤

∫
"N

(
αlj +1 − αlj

)
(αl′i+1 − αl′i ) d−α

= (l′i + 2)(lj + 3) − (l′i + 1)(lj + 3) − (l′i + 2)(lj + 2) + (l′i + 1)(lj + 2)

(N + 2)(N + 3)

= 1

(N + 2)(N + 3)
.

Thus, it follows that∫
"N

∣∣∣θj (α, l) − αlj

∣∣∣ ∣∣θi(α, l′) − αli
′
∣∣ d−α = O(N−2), (32)

uniformly for all l′i , lj ∈ {1, . . . , N}. Consequently, the terms involving the derivative
of φ are allO (

k
N

)
as desired. In the integral (32) we have assumed without loss of

generality thatl′i < lj . The other casesl′i = lj andl′i > lj can be treated in a similar
fashion. We next prove anL2 estimate fordρAV

LS (x; N, k, α)(φ) and then derive as an
immediate corollary an estimate for the variance ofdρAV

LS (x; N, k, α)(φ). In order to
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simplify the writing in the next proposition, we introduce the following notation for the
multinomial coefficient:

multi(N − 1, m, m′; x, y) := N !
m!m′!(N − m − m′)!x

mym′
(1 − x − y)N−m−m′

,

wherem, m′ are positive integers satisfyingm + m′ ≤ N andx, y ∈ [0, 1].

Lemma 4.6. (i) For anyx, y ∈ [0, 1],

N−2∑
m′=0

N−2−m′∑
m=0

e− km
N e− km′

N multi(N − 1, m′, m; x, y) = e−kx−ky + O
(

k

N

)
. (33)

(ii) Also, for0 ≤ x ≤ y ≤ 1
k
,

N−2∑
m=0

m∑
m′=0

e− km
N e− km′

N multi(N − 1, m′, N − m; x, 1 − y) = e−kx−ky + O
(

k

N

)
.

(34)

Proof of Lemma 4.6.(i) As in the proof of the first part of the theorem, moduloO(N−1)

errors, we can replaceN − 2 by N − 1 in the upper limit of both summations. Define
exp−k(x) := exp(−kx). Then, as a consequence of Lemma 4.5, we have that

N−2∑
m′=0

N−2−m′∑
m=0

e− km
N e− km′

N multi(N − 1, m′, m; x, y)

=
N−1∑
m′=0

N−1−m′∑
m=0

multi(N − 1, m′, m; xe− k
N , ye− k

N ) + O(N−1)

=
(
1 − (x + y) + (x + y)e− k

N

)N−1 + O(N−1)

= BN (exp−k; x + y) + O
(

k

N

)
= exp(−kx − ky) + O

(
k

N

)
.
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(ii) Once again, we can replaceN − 2 byN − 1 in the upper limit of the first sum. We
make successive applications of the binomial theorem to get:

N−2∑
m=0

m∑
m′=0

e− km
N e− km′

N multi(N − 1, m′, N − m; x, 1 − y)

= (N − 1)!
N−1∑
m=0

e− km
N

(
x − y + ye− k

N

)m−1

(m − 1)!
(1 − x)N−m

(N − m)! + O(N−1)

= e− k
N

(
1 − (x + ye− k

N ) + (x + ye− k
N )e− k

N

)N−1 + O(N−1)

= e− k
N BN−1(exp−k; x + e− k

N y) + O(N−1)

= e−kx−ky + O
(

k

N

)
. ��

We now use the combinatorial identities in Lemma 4.6 to estimate the variance of
the averaged level-spacings measures:

Proposition 4.7. For anyφ ∈ C1
0([0, 1]), we have that

∫
"N

∣∣∣dρAV
LS (x; N, k, α)(φ)

∣∣∣2 d−α =
(∫ 1

0
e−xφ(x) dx

)2

+ O
(

k

N

)
+ O

(
1

k

)
.

(35)

Proof of Proposition 4.7.As a consequence of the estimate in (31), it suffices to show
that

1

σ 2(N, k)

∑
l,l′

1

(k − 1)2

k−1∑
i,j=1

∫
"N

φk(αlj+1 − αlj )φk(αl′i+1 − αl′i ) d−α

=
(∫ 1

0
e−xφ(x)dx

)2

+ O
(

k

N

)
+ O

(
1

k

)
.

In order to show this, we need to distinguish three different cases corresponding to the
various relative configurations ofαli

′ , αli+1
′ , αlj andαlj+1:

Case 1. αli
′ < αli+1

′ < αlj < αlj+1 (or equivalently,αlj < αlj+1 < αli
′ < αli+1

′ ).
The argument is essentially the same as in Lemma 4.3. The only difference is that

instead of getting a simple integral, we obtain a double integral at the end of the iterated
integration. More precisely, just as in Step 2, we make repeated applications of Fubini’s
Theorem to ensure that the last four iterated integrals are with respect toαli

′ , αli+1
′ , αlj

andαlj+1 variables. We then integrate by parts in the firstN − 4 integrals with respect
to the remainingα’s. As before, we make the change of variablesx = αli+1

′ − αli
′ and

y = αlj+1 − αlj and then integrate by parts with respect toαli+1
′ andαlj+1. The end
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result is that:∫
"N

φk(αlj+1 − αlj )φk(αl′i+1 − αl′i ) d−α

= (N + 1)N

∫ 1

0

∫ 1−y

0
φk(x)φk(y)

· multi(N − 1, l′i+1 − l′i − 1, lj+1 − lj − 1; x, y) dxdy

= (N + 1)N

∫ 1

0

∫ 1

0
φk(x)φk(y)

· multi(N − 1, l′i+1 − l′i − 1, lj+1 − lj − 1; x, y) dxdy + O(k−1),

since 0≤ y ≤ 1/k in suppφk(y).

Case 2. αl′i < αlj < αl′i+1 < αlj+1 (or equivalentlyαlj < αl′i < αlj+1 < αl′i+1).
When compared with all possible relative configurations, the proportion of config-

urations satisfying the assumptions of Case 2 are asymptotically small. Indeed, the
proportion of such relative configurations isO(k−1). One can see this as follows: Given
N + 1 positive real numbers 0< α0 < . . . < αN < 1, we consider the following two
subsets ofk elements given by:

αl1 ≤ · · · ≤ αlk andαl′1 ≤ · · · ≤ αl′k . (36)

For each of the subsets above, there arek−1 pairs of the form(αlj , αlj+1) and(αl′i , αl′i+1).
From (36) it follows that for any fixed pair(αlj , αlj+1), there is at most one pair
(αl′i , αl′i+1) for which Case 2 is possible.

Case 3. αlj < αl′i < αl′i+1 < αlj+1 (or equivalently,αl′i < αlj < αlj+1 < αl′i+1).
This case can be dealt with in a similar fashion to Case 1. That is, we apply the Fubini

Theorem repeatedly to ensure that the last four iterated integrals involveαl′i , αlj , αlj+1

andαl′i+1. Then, we integrate by parts with respect to the remainingα’s. Finally, we
make the change of variablesx = αl′i+1 −αl′i andy = αlj+1 −αlj and integrate by parts
again with respect toαl′i+1 andαlj+1 to get:

∫
"N

φk(αlj+1 − αlj )φk(αl′i+1 − αl′i ) d−α

= (N + 1)N

∫ 1

0

∫ 1

x

φk(x)φk(y)

· multi(N − 1, l′i+1 − l′i − 1, N − lj+1 − lj + 1; x, 1 − y) dydx

= (N + 1)N

∫ 1

0

∫ 1

0
φk(x)φk(y)

· multi(N − 1, l′i+1 − l′i − 1, N − lj+1 − lj + 1; x, 1 − y) dydx + O(k−1).

As in the proof of part (i) of Theorem 1.1, we make the substitutionm = lj+1− lj −1
andm′ = l′i+1 − l′i − 1 in order to apply Lemma 4.6. From the estimate in (31) and the
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analysis of Cases 1-3 above, we deduce that∫
"N

∣∣∣dρAV
LS (x; N, k, α)(φ)

∣∣∣2 d−α

= k2(N + 1)N

(N + k − 1)2

[ N−2∑
m′=0

N−2−m′∑
m=0

e− mk
N e− m′k

N

∫ 1

0

∫ 1

0
φk(x)φk(y)

· multi(N − 1, m′, m; x, y) dxdy

+
N−2∑
m′=0

m′∑
m=0

e− mk
N e− m′k

N

∫ 1

0

∫ 1

0
φk(x)φk(y)

· multi(N − 1, m′, N − m; x, 1 − y) dydx
]

+ O
(

k

N

)
+ O

(
1

k

)
.

By Lemma 4.6, we finally conclude that∫
"N

∣∣∣dρAV
LS (x; N, k, α)(φ)

∣∣∣2 d−α = k2(N + 1)N

(N + k − 1)2

(∫ 1

0
φk(x)e−kxdx

)2

+ O
(

k

N

)
+ O

(
1

k

)
=

(∫ 1

0
φ(x)e−xdx

)2

+ O
(

k

N

)
+ O

(
1

k

)
. ��

Theorem 1.1 (ii) is then an immediate consequence of the Chebyshev inequality and the
following corollary of Proposition 4.7:

Corollary 4.8. For anyφ ∈ C1
0([0, 1]), we have∫

"N

(
dρAV

LS (x; N, k, α)(φ) −
∫ 1

0
e−xφ(x) dx

)2

d−α = O
(

k

N

)
+ O

(
1

k

)
. (37)

Prof of Corollary 4.8.The corollary follows directly from Proposition 4.7 and the es-
timate for the convergence of the integrated, averaged level-spacings measure in (30).
��

Remark.We should point out that one can also quite easily determine the weak limit of
the level-spacings measures before “unfolding the zeroes” (i.e. rescaling to unit mean
level-spacing). Indeed, by carrying out exactly the same analysis as above, one can show
that

w − lim
N→∞

1

σ(N, k)

σ(N,k)∑
l=1

1

k − 1

k−1∑
j=1

δ(x − (θ
(k)
l,j+1(α) − θ

(k)
l,j (α))) = δ0(x), (38)

both in the mean, and pointwise for an asymptotically full measure ofα ∈ "N . Indeed,
the computation of the weak-limit in (38) turns out to be a simpler problem that the
corresponding one after “unfolding”, since the error terms are much easier to control.
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