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Abstract: The Lamé polynomials naturally arise when separating variables in Laplace’s

equation in elliptic coordinates. The products of these polynomials form a class of

spherical harmonics, which are joint eigenfunctions of a quantum completely integrable
(QCI) system of commuting, second-order differential operaftprs A, P, ..., Py—1

acting onC*(SV). These operators naturally depend on parameters and thus constitute
an ensemble. In this paper, we compute the limiting level-spacings distributions for the
zeroes of the Lamé polynomials in various thermodynamic, asymptotic regimes. We
give results both in the mean and pointwise, for an asymptotically full set of values of

the parameters.

1. Introduction

Fix N + 1 distinct, positive real numbers & ag < --- < ay. Given Cartesian
coordinateszs, . .., zv+1) € RV*1 consider the partial differential operators

.. 9 9 \?2
Po=> So,..., i— —zi— ) ;. k=0,...,N—1 1
k ; (@0 aN) (zl o) z; 8z,~> 1)

acting onC*®(SV). Here,S,ij denotes thé&!" elementary symmetric polynomial in the
« parameters witky; anda; deleted. It is easy to check that

[P,',Pj]:O foralli,j:O,...,N—l.

Consequently, since th;’s are jointly elliptic, they possess a Hilbert basis of joint
eigenfunctions. Sincé&y is just the constant curvature spherical Laplacian, these eigen-
functions form a class of spherical harmonics, the so-cgleetralized Lamé harmonics
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[T1]. These systems constitute important examples of quantum completely integrable
systems and they have as complex analogues the Gaudin spin-chains of various types
[HW, K]. The purpose of this note is to derive asymptotic formulas for the level-spacings
distributions of the zeroes of these spherical harmonics. To describe our results in more
detail, we begin by noting that in terms of appropriate (elliptic-spherical [HW, T1, T2])

parametrizing coordinatég, ..., uy) € (g, @1) X --- X (ay_1, ay) onSY, and up
to constant multiples, the joint eigenfunctions®, ..., Py—1 can be written in the
form:

N
Y, . ouy) = [ Sn(Juj —eo. ... Juj —an) - ¢u)).

Here, ¢ is a polynomial, andS,, (xg,...,xy);m = 0,..., N + 1 denotes thenh
elementary symmetric function avi + 1 variables. Furthermore, the functigi(x) :=
Su(V/x — o, ..., +/x —ay) - ¢(x) is a solution of the ODE:

2
]_[(x Zlg+221_[(x—ax)—1//+C(x)1/f—0 2

v=0A#v

where,C(x) is a polynomial of ordeN — 1 depending linearly on the joint eigenvalues
(Ao, ..., An—1) € Spec(Py, ..., Py_1). The different species [WW] of harmonics are
indexed byn = 0, ..., N + 1. Although for simplicity, we consider here the case where
m = 0, our main result (Theorem 1.1) can be proved for the other cases corresponding
tom=1 ..., N+ 1inasimilar fashion. Whem = 0, the solutiong/(x) are called
generalized Lamé polynomials.

Consider

£ty = 1oy ... ol

the set of Lamé polynomials of degrieeBy the standard theory of spherical harmonics
[WW] and the fact that the corresponding Lamé harmonics form a Hilbert basis, we

know thatj (k) = o (N, k) := % Lete(k) < 91.("2) denote the (real) zeroes

of the polynomial¢i(k), wherei = 1,...,0(N, k).

In our main result (Theorem 1.1), we compute the asymptotic weak limit for the level
spacings distribution averaged over the §ét,), of k" order Lamé polynomials. More
precisely, consider

1 1
AV . o (k) (k)
oy N ko) =SS 3 ];8 (v kO 1@ - 0B @), @)
wherex € AN and
AN = {(ag, ..., ay) € [0, l]N+1; <o)< <aN_1 < ON). (4)

We henceforth put the normalized Lebesgue meastire:= (N + 1)!da on AV, so
that meagA®) = 1. In order to state our first result, we will also need to introduce the
integrated, averaged level-spacings distribution:

dnasi N i= [ dof (N ko) d (5)
AN
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Theorem 1.1. (i) Fix0 < ¢ < 1and assume thdt ~ N1=¢ asN — oc. Then,

w— lim dups(x; N, k) =e Fdx.
N—o0

(i) Suppose that(N) satisfies the hypotheses of p@)t Then, forany < § < ¢ there
exist a measurable subsgt ¢ A" with meag /") > 1 — N~%, such that for any
aecJV,

w— lim dppd (x; N, k, o) = e *dx.
N—o00

In both (i) and (i), the weak-limit is taken in the dual space(t‘@([a, b]), where
O0<a<b<oo.

Remarks.(i) In recent work, Bleher, Shiffman and Zelditch [BSZ 1,2] have determined
the asymptotics of various measures associated with the distribution of zeroes of eigen-
sections of Toeplitz operators. The Lamé ensemble together with its complex analogues
(the Gaudin spin chains) can be described in the Toeplitz framework [K]. However, in
[BSZ 1,2] the averaging is carried out over a much larger ensemble: natialyjtably
normalized bases of Toeplitz eigensections. Most such bases are not quantum completely
integrable and consequently, the situation considered in this paper is quite different from
that in [BSZ 1,2]. The main point here is that we are really averaging over a compara-
tively small ensemble indexed by the parameters AV and the elements of which are

all quantum completely integrable.

(i) There are two asymptotic parameters that enter into our analysisikh¢he:degree

of the joint eigenfunctions, andl, the dimension of the base space, which in this case is
justSY. So, Theorem 1.1 above is really a hybrid asymptotic result about the zeroes of the
joint eigenfunctions of the?;’s on spheres of increasing dimension where we assume
that the number of zeroes, satisfiesk(N) ~ N1=€ asN — oo. This asymptotic
regime can be thought of as a kind of thermodynamic limit. It would also be of interest
to determine what happens in other asymptotic ranges where the number of zeroes is
permitted to grow at faster rates &s— oo. In particular, one would like to know what
happens in the purely semiclassical regime, whéiis fixedandk — oo. We hope to
address these points in future work.

(iii) As the referee has pointed out, it would be of considerable interest to determine
how the actual zeroes of the Lamé harmonics are distributed in the sense of a Riemann
measure o8V itself. A natural starting point would be to look at the density of states
measures (see [ShZ, NV]). In light of our results in this paper, the zeroes should, at least
on average, behave like random variables in the asymptotic regime iaiére- N1 <.
Consequently, we believe that the density of states should on average tend to uniform
measure oY, but at present we do not know how to prove this. We plan to address
this question for the Lamé harmonics as well as the more general complex XXX Gaudin
spin chains in an upcoming paper.

2. The Lamé Differential Equation

We now give a brief introduction to the Lamé equation following the classical presenta-
tion in Whittaker and Watson [WW], where this equation is introduced via the theory of

ellipsoidal harmonics. In his treatise on heat conduction in an ellipsoidal body, G. Lamé
was led to consider the class of homogeneous, harmonic polynomidtd'oh that
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vanish on a family of confocal quadrics. There is an analogous construction of spherical
harmonics which we will now describe. Pick a $ep, ... , an} of positive real con-
stants, all distinct, and ordered in increasing order. Define, for some real paranteeer
diagonal matrixds = diag((6 — o)1, ..., (& —an)~?1). The problem then reduces

to finding, for any positive integdr and multi-indexg = (o, ... , Bn) € {0, V1 k

real number®y, ..., 6, for which the Niven’s functions

k
f5X) = XP [ (49, X. X), X e RN, (6)
j=1

are solutions of Laplace’s equatidn( f3) = 0. The restrictions of thes’s to SV yield

an important class of spherical harmonics:deeaeralized Lamé harmonidSlearly, the
functions fg(X) vanish on a family of confocal cones. Moreover, after substitution of
the ansatz into Laplace’s equation, a straightforward computation shows that the relevant
0; are obtained as solutions of the equations

N N

1 2B,
2%9]-(01;1) —a, + 2(:)9]'(01;1) —ay
V= V= (7)
4

=0 for j=1,...,k.
+;e,-<a;l)—9,-(a;z) /

In the literature, these equations are commonly referred to as the “Bethe Ansatz” equa-
tions. Consequently, if we denote the solutions of (79hy . ., 6, it is not hard to see
that the functions

N k
Y =[x —a)??]]x -0, B €i0.1) ®)
v j=1

satisfy the second order differential equation given by

N 2y 1 dy
lg(x—au)ﬁ+§Zl_[(x—au)E+C(x)lﬁ=0, 9)

v=0 pu#v

whereC (x) is a polynomial of degre& — 1 that can be computed explicitly. This is
exactly Eqg. (2) of the introduction, and is known as feneralized Lamé differential
equation In the special case where the multi-inggx= 0, it follows that thek™" degree
polynomial¢ (x) = ]_[’;:l(x — 6;) is a solution of the Lamé equation. Following the
terminology adopted previously, we refer to theséa@sné polynomialsRestricting our
attention to theV-sphereSY, we can use elliptic-spherical [HW, T1, T2] coordinates

u = (u1,...,uyn) € (oo, @) x --- x (ny_1, ay) to rewrite Niven’s function in the
form
N N
fotua. . oun) =c[[ [T — e Ppw). (10)
v=0 ;=1

wherec is some constant depending only@g ... , oy ande¢ (u) = ]'[’;Zl(u -0 .
The functionsy (u1, ... , uy) in the introduction are simply linear combinations of the
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fp’s and consequently, they are solutions of the eigenvalue problem for the Laplace’s
operator orS" written in terms of elliptic-spherical coordinates; that is

9 LA
W(JU“‘J’@)]— hoV,

J

N

4
12—31 [Tiej Cuj = i) [V —

whereU (x) = ]‘[ﬁ’zo(x — ay). The separated equations have the form

N
H(x—ot + Zn(x w—i-} ZAlex] v =0, (11)
v=0

v ouFv

where the separation constants ..., Ay_1 are the joint eigenvalues of the partial
differential operatorsPy, ..., Py_1 defined in (1). Equation (11) is exactly the Lamé
differential equation (2) considered in the introduction.

3. TheHeine-Stieltjes Theorem

One of the key steps in the proof of Theorem 1.1 is based on a result originally obtained
by M. Heine [H]. Shortly afterwards, Stieltjes [S] improved Heine’s result in the special
case of differential equations of Lamé’s type, the case that we consider here. For a
complete proof, we refer the reader to Szego [Sz].

Theorem 3.1 (Heine—Stieltjel Let A(x) be the polynomial of degre® + 1 given by
AX)=(x —ag) - (x —ay) - (x —ap),

where0 < ag < a1 < -+ < ay and B(x) is a polynomial of degred’ satisfying the
condition

B(x
(x) _ po fy PN

A(x)  x —ag x—ay’
for given numberg, > 0,v =0, ..., N. Then, there are exactly(N, k) = (k],v(%‘ 11)),'
polynomialsC (x) of degreeN — 1 for which the differential equation
d’¢ d¢
Ax )— + 2B(x )— +Cx)p=0 (12)

has a polynomial solution of degrée> 0. In addition, for each of the (N, k) solutions,
¢ (x), the zeroes are simple and uniquely determined by their distribution in the intervals
((XOv al)’ AR (aNfl’ aN)'

Note that the Lamé equation (11) is a particular case of the differential equation
(12) appearing in the statement of the theorem: Indeed, in the Lamé case, we have that
pv = 1/4forv =0,..., N. Taking into account the Heine—Stieltjes result, we denote
the zeroes ob (x) by 61(a; 1) < --- < Ok (a; 1), wherea := (ap, ..., ay), Whereas
[ =(1,...,k);1 <11 <--- <l < N denotes the configuration of the zeroes. By
this we mean tha; («; /) is the smallest zero lying in the interval;, _1, o), the next
zerofz(a; 1) is contained in the intervaly, 1, oz,) and so on.

Although we will not explicitly use the following result in this paper, it is of inde-
pendent interest and so we include it here for future reference:
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Lemma 3.2. For any given configuratiod = (I1,...,1), the zeroe®1(a; 1), ...,
Ok (o 1) are differentiable functions af € AY.

Proof. The proofis based onthe argument given in [Sh]. Differentiating the Bethe Ansatz
equations (7) with respect to tifevariables, we form the Jacobian matBx= (b;;)
given by

ay)

N .
_21: ?2 Zm;ﬁz(@ ©:—0,)2 ifi=j
@07 if i #j.

b,'j =

By a standard result in matrix theory (@gdrin’'s Theorem) it follows that all the
eigenvalues oB are strictly negative since i is an eigenvalue oB, then for some
je{l,2, ...k}

N
Py
A Sb,/+Z|bt/| :_Z@_—a‘})Z < 0.
i#j v=0
Therefore, the determinant 8fis nonzero, so we can apply the implicit function theorem
to conclude the proof. o

4. Level Spacings Distribution

Consider the Lamé system consistingMf+ 1 particles located atg, ..., oy with

0 < o < -+ < ay < 1 together with thet zeroesfi(a;l) < --- < O(a; 1) of

the polynomial solutio® (x) of the differential equation (12). Recall that, we use the
notationd; («; I) to designate thg’" zero in configuration = (I1, ..., [x) with respect

to parameters = (o, ..., ay). As a consequence of Heine—Stieltjes Theorem, we
have that:

1 1
dpiis (xi N.k,e) = D
oWNK)y  en kT

1 (13)
. ZB (x =k (0j41(c; 1) — 0j (a5 1))

and so,

durs(x; N, k) :=/ doy (x; N, k, @) da
AN

1 1 k—1
_ Yoy /A S = k(@i ) — (e ) da. (14)
j=1

o (N, k) 1<ii<--<ik<N

4.1. Proof of part (i) of Theorem 1.1The proof is somewhat long and computational,
so we divide it into several steps. For notational simplicity, we assume heffe thqt=
[0,1] andg € C&([O, 1]). The argument for more general non-negative interival$]
follows in the same way.
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Step 1. We first show thatliu; s (x; N, k) can be asymptotically approximated by fairly
simple integrals that do not depend on the explicit formulas for the zeroes
01(a; 1), ..., 6c(a; ). More precisely, we claim that:

dups(x; N, k)(¢)
1 1 k—1 L
= SN B Z k— 1/2:_1/;\N¢(k(alj+1 —a;))da+0 (ﬁ) . (15)

1<hi<--<[k=N

To obtain the estimate in (15), we make a first-order Taylor expansion in (14) around
k(oz,j+l — oqj) to get:

durs(x; N, k)(¢) =

1 1 k—1
SvE. X o1 X; /A Okl — 1)) do+ EL(N. k. ¢).  (16)
J=

I<hj<--<[k<N

where the error ternt1 (N, k, ¢) is given by,

1 k

o (N, k) Z k-1

1<l <<l <N

E1(N.k,¢) =

k—1
Z/AN @' (k& (@) [(0j11(: D) — @y py) — (0(s ) — )] da,
=1

with &; (@) € (0, 1). We need to show thaf1(N, k, ¢) = O (&).
First, we start with a simple calculus lemma:

Lemma4.1. Forany0 < i < j < N and multi-indices8 = (81, 2) € N2\ {(0, 0)},
we have

/ e gy TmaG A DTI2 B+ + D)
av LN +1+1)

where we define products of the foﬁj‘j’=1 to be equal tdl and |8| := 81 + B2.
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Proof of Lemma 4.1A direct computation with iterated integrals gives

/ aflafz du :/ aflafz do
AN O<ap<-<ay<1
1 ray a1
=(N+1)!/ / / a’gzafldaou-da;v
(N + l)‘f / /Ch+1 ﬁZ ﬁ1+l da d

_ (N 4+ 1)! / / / ﬁ2+/31+j da;---day
HB1+i+D...(B1+)) s

(N + 1!
Br+i+D... B+ Br+B2+j+D...(Br+B2+N+1D
PG +D T2y B+ +D)
a LN +1+1) '

As a consequence of Lemma 4.1, we see that the integrals of consecutive monomials
over the truncated positive Weyl chambgf’ are asymptotically equal a8 — oc.
Combined with the Heine—Stieltjes result, this fact leads to the following simple corollary
of Lemma 4.1:

Coroallary 4.2. For any configuratiorl = (I3, ... , [x) and integer; satisfyingl < j <
k, we have that

/AN |0j(@: 1) — oy, | da=ON™Y (17)

uniformly ink.
Proof of Corollary 4.2 As a consequence of the Heine—Stieltjes theorem, we know that
given a configuratiot, the j1 zero necessarily lies in the interv@l;, 1, o,); that is,

o—1 <Ol l) < ay;.

On the other hand, by Lemma 4,y o; do = 45 Thus,

/AN ’91'(01;1)—0111.‘ da < /AN (oqj —ozljfl) da
lj+1 lj
“N+2 N+2
=owNhH. o
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Given Corollary 4.2, we can now estimate the error teta(NV, &, ¢), in (11) as follows:

k
Ei(N,k,¢) < —
o (N, k) 1<l <<l <N k=1
k—1
Z(/ |01 ) — oy | cToH—/ |0 (e 1) — ey | Ja) b Il o2
=1 AN AN

o(3)
N
This proves the identity in (15) and so Step 1 is complete.

Step 2. The next step involves computing the first term on the RHS of (15) explicitly.
We claim that:

1 1 k-1
o (N, k) 2 k—lZ/AN‘f’(" (@072 — ;) do
) ]=l

1<hi<--<lk<N

k
“viio1?© 8)
N-2 .
+ a]\(lf\—’i: li) n;)MN -m—1k— 1)/0 ¢ (kx)binom(N, m; x) dx
N

where binoniN, m; x) := mxm(l — x)N=" for x € [0, 1]. In order to prove the
identity in (18), we start with a simple lemma which involves a successive application
of the Fubini theorem.

Lemma 4.3. For any integers, j withO <i < j < N, we have that

1
/ 1) (k (aj — ai)) doa = (N + 1)/ ¢(kx)binom(N, j —i — L, x)dx. (19)
AN 0

Proof of Lemma 4.3Given the definition ofA", it is clear that

f/\N¢(k(aj—ai)) Jaz(N+1)!/olf0aN.../oal¢(k(aj_ai)) dao- - day.

By repeated application of Fubini’s theorem, we can ensure that the iterated integrals
with respect tay; ande; are carried out last. More precisely, we apply Fubini’s theorem
on the double integral with respectdg ando ;1 to reverse the order of integration.

We then repeat the same procedure for the double integral with respecatalo; »

and so on, until we bring the last integration with respeet toT his gives

1 p1l pay aj12 Lo o1
/ da:/ / / / / / dag...daj_1dajyy...day_1dayda;.
Ay 0 aj Jaj aj 0 0
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We proceed in a similar manner foy to finally obtain:

1 rl ajt2 Lo Lo Ai42 [ Ui a1
f da:/f ...f / f .-.\/ f ..-\/\ dao...
AN 0 Jaj oj 0 o o 0 0

.. da,-_ldai+1 N doz.,-_ldaidaj+1 . dOlNdOlj

/f/ Lol e

..dayda;daj,

where aToT,-, c%z\j means that these variables are omitted in the product measure
dag---day. We then carry out the iterated integration over the f¥st- 2 variables
Qo < o1 < - < o1 < @4l < < o1 <ajp1 <--- <oy toget

1 orojof (i —a) i1 (1 — @)V
/ Ja:(N+1)!/ //ﬁ(“( ) A da;.
AN oJo i (G—i-=-D (N-)

Finally, we make the change of variables= «; — «;, y = «; and integrate by parts
times with respect tg. It follows that

x/ i—1 (1—X)N (j—i—=1)
/AN¢(I< (oz —a,)) do —(N—i—l)'/ ¢(kx) DN = —i-D) dx
= (N + 1)f ¢ (kx)binom(N, j —i — 1; x)dx.
0

This completes the proof of Lemma 4.30

To complete Step 2, we need to compute the asymptotic averages (18) of the integrals
fAN ¢ k(e ,y —ou;)) do. First, we start with a simple combinatorial lemma. In order
to state the lemma, it is useful to introduce some notation at this point: We denote by
S;(m) the set of all configurations = (I3, ..., ;) for whichi;;; — I; = m. As the
following lemma shows, the cardinality &f; (m) is independant of.

Lemma4.4. Foreachn =0, ..., N—1andeachj =1,... , k, the number of-tuples
(g, ...,y withl <l <... <l < N and satisfyind; 1 — I; = m is given by
(N —m+k —2)!
k—=D! - (N—m—1)!
Proof of Lemma 4.y identifying the /! and thej + 15! zeroes, we are reduced to the

problem of distributinge — 1 zeroes amongst the remainifvg— m slots. Clearly, this
number is given by (N —m,k —1). 0O

o(N—m,k—1) =

As a consequence of Lemma 4.4,

1 1 3
o (N, k) 2 k—1ZfAN¢(k (@071 = ;) do
] ]=l

1<li<--<lk=N

N—-1k-1

( 1)U(N k) ZZ Z f 061/_*_1—0(1./)) do.

m=0 j=1leS;(m)
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In order to apply Lemma 4.3, we need to treat the two cases whete0 andm > 0
separately. Since by Lemma 4.4, we know thigl0) = o (N, k — 1), itis clear that

1 1 k—1
P ¢ (k (a1, — 1)) da (20)
o(N, k) 15[1521k51vk—1;/;\1v +1
o(N,k—1) N-1k-1
- e 4O EY 3 [ o) de
(N B (k= DU(N k) =1 j=11eS,(m) '
On one hand, we can apply Lemma 4.3 to the RHS of (20) to get
o(N,k—1)
—U(N’k) #(0)
N-1k-1 X
(k 1)0'(N k) £ Z Z Z / ®ljpa _alj)) da = m‘ﬁ(m
=1 j=1leS;(m)
N1 N—-1k—1
T e TSy o (k — 1)o (N, k) X_;L]X;lesz(:m)/ ¢ (kx)binom(N, liva—1; — —1;x)dx. (21)

On the other hand, an application of Lemma 4.4 allow us to remove the summations
over j and! in (21), so that

N+1 N—-1k-1
DoV B XX / ¢ (kx)binom(N, [; 41 — 1; — 1; x) dx

m=1 j=11eS;(m)

N+1

- 1
=B mX:%G(N —m—1k— 1)]0 ¢ (kx)binom(N, m; x)dx. (22)

The identity in (18) follows from (21) and (22) and so, Step 2 is complete.
Step 3. Summing up, as a result of Steps 1 and 2 we have shown that:

dMLS(x' N.K)(¢) =

N+1
(N, k) £

Z (N—m—1k— 1)/ ¢>(kx)b|nom(me)dx+(’)< ) (23)

Our next task is to further simplify the expression on the RHS of (23) by appealing
to the theory of Bernstein approximations [D]. First, we need to estimate the quotient
oN=mst=L) appearing on the RHS of (23). For this, it is convenient to consider two
cases:
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Case 1. (im << (N/k)1#); 0 < B < 1. Under this assumption,

o(N-m—-1k-1  k ﬁ(l m+1)

o (N, k) S N+k-10 N+

[ k-2
k m+1
= ex log(1- ——
Nik—1oP 12_(:) g( N+]>:|
Ci2
k 1 1
=————exp| > log 1-mte :
N+k-1 v N 1+#

_ kel Nemtl 1k
NP N 1+§ N2

j=0
(24)

After some further simplification involving Taylor expansions, we get that
o(N—m—-—1k—-1)
o (N, k)

e 2 (o) o ()
“ e e () o (7))
i) (100 (57) <0 ()

Finally, using the fact that”e™ = O, (1); for all x > 0, we get

o(N-m—-1k-1 &k —mk k? 1
o (N, k) _N—i—k—leXp( N )+O(N2)+O<N>' (25)

Case 2. m >> (N/k)1*#). In this case, we can choosed 8 < % so that with
appropriate constan, C2 > 0,

o(N-m-Lk-1 k& ’i:[z(l m+1
o (N, k) _N+k—1j:0 N+j
k—2
k NP (26)
< 1—Cj—0
< srr=al] (1 )

-0 (e—CZ(N/k)B) .

Substituting the estimates (25) and (26) into (23) and using the fact that

N 1
Z binom(N, m; x) =1 and / dkx)dx = O™
m=0 0
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gives:
N=2
k(N +1) _mk
. K -
durs(x; N, K)(¢) N+k—1m:0€ N
1 _ k 1
/ ¢ (kx)binom(N, m; x) dx+(9<—>+(’)<—)
0 N k
k(N1 i ik
TNtk-14&°¢
m=0

1
. / ¢ (kx)binom(N, m; x) dx + O <£> + O <1-> (27)
0 N k

since the terms fom = N — 1 andm = N are bounded by /IN. Recall that for a
function 7 (x) defined or{0, 1], the N*" degree Bernstein polynomial ¢f(x) is defined
to be [D]:

N
By(f:ix)= Y f (%) binom(N., m: x).
m=0

It is easy to see that in the special case where g = e~**, there is a concise
closed-form expression f@y (exp_; x); indeed,

By (exp_y; x) = (xe_% +@1- x))N . (28)

From the identity in (28) we easily derive the following:
Lemma4.5. For x > 0, we have that

k

By (exp_;; x) = e 10 (ﬁ) . (29)

Proof of Lemma 4.£Expande*§ in asecond-order Taylor series and use the identity (28)

A [ ()]

N 2,—x
0<e*"—(1—ﬁ> <X
- N - N

and the fact that”e™ = 0, (1) for all x > 0, it follows that

2
By(e ™™ x) =™ (l +0 (%)) +ON Y= 10 (%) .

=zl

By(exp_;; x) = [1 +x (e_

From the inequality

’

This completes the proof of the lemman
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Substituting (29) into (27), we finally obtain

k(N +1) [1 k 1
dnas(ei N K@) =3 G [ 0GB (exp i) dx + 0 (ﬁ> e (E)

_kN+1D [t i k 1
=vii-1 /o ¢kx)e ™™ dx + O (ﬁ) + 0 (E)

= ' Fdx+ 0O k O 1 30
_/0 P (x)e X+ <N> + <z> (30)

By noting thatCé([O, 1)) is dense inC8([0, 1]), this completes the proof of Theo-
rem1.1(). O

4.2. Proof of part (i) of Theorem 1.1For convenience, we henceforth denotedby,
the double sum over the indices<ll; < --- <[y < Nand1l</!1<..- <!’y <N.
We also defineb (x) := ¢ (kx). First, we claim that

/ apfd @ N k) (@)
AN

k—1
1 1 k
_ » 3 R po—ap)dat+O(=).
2N 1) £ (k—l)zi,,-=1/A~"’k(“l'“ Py — ) A (N)
(31)

To obtain (31), we essentially repeat the argument of Step 1 in Sect. 4.1. That is, we
expand each of the functiogg (6 11 (c; 1) — 0 («; 1)) andey (6 1(er; I') — 0; (s 1)) in
a first-order Taylor series around the poiats , — «;;) and(ey,, — ay;) respectively.

First, we claim that the terms involving the derivativeggfare allO (%) Indeed, the
Heine—Stieltjes Theorem and Lemma 4.1 imply that

‘Qj(a, - al,‘ |0i (e, 1") — o, | Ao < (41— o) (41 — ) dat
AN J AN J J

Ui+ =i+ DA+ =i+ U+ + i + DU+ 2)
a (N +2)(N +3)

1
T WN+2WN+3)

Thus, it follows that

da = O(N2), (32)

[ Joren =l )

uniformly for all’;,1; € {1,..., N}. Consequently, the terms involving the derivative
of ¢ are allO (%) as desired. In the integral (32) we have assumed without loss of
generality that’; < ;. The other case; = [; andl’; > [; can be treated in a similar
fashion. We next prove ah? estimate fordp‘L“;’ (x; N, k, @)(¢) and then derive as an
immediate corollary an estimate for the varianceipfg’ (x; N, k,a)(¢). In order to
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simplify the writing in the next proposition, we introduce the following notation for the
multinomial coefficient:

. N!
multitN — 1, m, m’; x, y) := x™ m L—x—y)N-m= m'
m!m'\(N —m —m’)!

wherem, m’ are positive integers satisfying + m’ < N andx, y € [0, 1].

Lemma4.6. (i) Foranyx,y € [0, 1],

N— —2—
km m’ . k
Z Z “Ne N multiN —1,m m;x,y) = ) (ﬁ) . (33)

m’=0

(i) Also,foro<x <y <32,

N
(34)

N-2 m " k
Z Z e N multi(N -1, m',N —m;x,1—y) =e_kx_ky+(’)(—> .
m=0m’=0

Proof of Lemma 4.§i) As in the proof of the first part of the theorem, moddN —1)
errors, we can replac¥ — 2 by N — 1 in the upper limit of both summations. Define
exp_, (x) := exp(—kx). Then, as a consequence of Lemma 4.5, we have that

Z e~ i e~ s multi(N — 1, m’, m; x, y)

N—
= Z Z muIti(N —1,m', m; xe_%, ye_%) +OWNY

m=0

" r\N—-1
=(1-e+n+E+neF) oW
= By(Eexpi;x+y)+0 (%)

= exp(—kx —ky) + O (%) .
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(ii) Once again, we can repladé — 2 by N — 1 in the upper limit of the first sum. We
make successive applications of the binomial theorem to get:

N-2 m . i
Z e Ne  nmultiN —1,m',N —m;x,1—y)
m=0m’'=0
N-1 ( e
U _m \F Tyt ye N) (1—x)N—m
= (N —1)! - Ot
(N=D!) e D = TN

1
:e_% <1—(x+ye_%)+(x+ye_%)e_%) —i—O(N_l)

k k
= e NBy_1(exp_g;x +e Vy) + O(N™Y

k
— —kx—ky ol=). O
e + ( N)

We now use the combinatorial identities in Lemma 4.6 to estimate the variance of
the averaged level-spacings measures:

Proposition 4.7. For any¢ € C3([0, 1]), we have that

2 1 2 k 1
/ [dpfy i Nk ) (9] da = <f e (x) dx> +0 <—) +0 (-) .
AN 0 N k
35

Proof of Proposition 4.7As a consequence of the estimate in (31), it suffices to show
that

k—1
1 1
N G D /AN e
’ i j=1

Lr

(s co(f) (),

In order to show this, we need to distinguish three different cases corresponding to the
various relative configurations of,/, «;,,,/, a;; anday;

Case 1. oy < ay,y <oy <ay, (orequivalentlyo;, <oy, <oy <oy ).

The argument is essentially the same as in Lemma 4.3. The only difference is that
instead of getting a simple integral, we obtain a double integral at the end of the iterated
integration. More precisely, just as in Step 2, we make repeated applications of Fubini's
Theorem to ensure that the last four iterated integrals are with respggt tg, ,, o,
andqy;,, variables. We then integrate by parts in the fivst- 4 integrals with respect
to the remainingy’s. As before, we make the change of variabtes «;,,,» — «;,» and
y = ay;,, — o;; and then integrate by parts with respect4g, andoy;,,. The end
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result is that:

/N¢k (a1 — )iy, —ar,) da
A

1 pl-y
= (N + 1)N/O /0 Dr ()P (y)
-multi(N —1,0'i41 —1'; =1, 1j41 —1j — L, x, y) dxdy

1 ,1
= (N+1)N./o /0 &k (X)Pr ()
-multi(N — 1, l/,‘_;,_]_ —I'; -1, liva—1j =1 x,y)dxdy + O(kil),

since 0< y < 1/k in suppor (y).

Case 2. oy, <y, <ay,,, <ay,, (orequivalently;, < oy, <oy, <oap,,).

When compared with all possible relative configurations, the proportion of config-
urations satisfying the assumptions of Case 2 are asymptotically small. Indeed, the
proportion of such relative configurations®k—1). One can see this as follows: Given
N + 1 positive real numbers @ ag < ... < ay < 1, we consider the following two
subsets ok elements given by:

(0751 <.---= (773 andOl[/l <.--= ay, . (36)

Foreach ofthe subsets above, ther&aré pairs of the formialj SO g) and(ey;, ay,,,)-
From (36) it follows that for any fixed paifey;, os;,,), there is at most one pair
(op;, ap, ;) for which Case 2 is possible.

Case 3.y, < ay;, <ay,, <ay,, (orequivalentlyoy, <oy <oy, <oap,,).

This case can be dealt with in a similar fashion to Case 1. That is, we apply the Fubini
Theorem repeatedly to ensure that the last four iterated integrals invalve;,, «;;
anday,,,. Then, we integrate by parts with respect to the remainiisg Finally, we
make the change of variables= oy, , —ay, andy = «;,, —oy; and integrate by parts

”
again with respect tay, , andey, ,, to get: '

/ANcﬁk(asz — o)y, —ap,) da
11
— (N4 DN fo / Pk () ()
~multi(N —1,'i41 1"y =L N —lj31—1; + 1, x,1— y) dydx
11
= (N+1)N/0 /o b ()P (y)

“MUIti(N — 1,041 —1's =L, N =31 — 1 + L x, 1 — y) dydx + OG™1).

As in the proof of part (i) of Theorem 1.1, we make the substitutiog /; 1 —1; —1
andm’ =1';;1 —1I'; — 1in order to apply Lemma 4.6. From the estimate in (31) and the
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analysis of Cases 1-3 above, we deduce that

2
[ iy v k@]

KN + DN [ =2vz
SRS et [ faomo
m=0 m

~multi(N — 1, m’, m; x, y) dxdy
N-2 m

/ 1 p1
LYY e T/O /0 BB (y)

m'=0m=0
-multiiN —1,m',N —m;x,1—y) dydx]

ro(3)+o(2)

By Lemma 4.6, we finally conclude that

2 K*(N + 1N [t
[ i vk @] dw = ( | ¢k<x)e’“dx)

ro(y) o)

_ (/01¢(x)e_xdx>2+(9<%>+O<%>. o

Theorem 1.1 (ii) is then an immediate consequence of the Chebyshev inequality and the
following corollary of Proposition 4.7:

Corollary 4.8. For any¢ € Cé([o, 1]), we have

1
/ (dpg‘sv(x; N, k,a)($) —/ e P (x) dx> da=0 (f) +0 (}> . (37
AN 0 N k

Prof of Corollary 4.8.The corollary follows directly from Proposition 4.7 and the es-
timate for the convergence of the integrated, averaged level-spacings measure in (30).
i

2

2

Remark.We should point out that one can also quite easily determine the weak limit of
the level-spacings measures before “unfolding the zeroes” (i.e. rescaling to unit mean
level-spacing). Indeed, by carrying out exactly the same analysis as above, one can show
that

o(N,k k—1
1
w— lim §: 7 280 = 01— 6 @) = o). (38)
=1 j=1

both in the mean, and pointwise for an asymptotically full measuse®fA” . Indeed,
the computation of the weak-limit in (38) turns out to be a simpler problem that the
corresponding one after “unfolding”, since the error terms are much easier to control.
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