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aLaboratoire de Chimie Organique 1, CNRS UMR 5181, Université Claude Bernard—Lyon I, ESCPE. 43,
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Abstract—It has been found that selective N-alkylation of 4-alkoxy-2-pyridones can be achieved under anhydrous, mild conditions
with tetrabutylammonium iodide and potassium tert-butoxide being employed as the catalyst and the base, respectively. The
procedure was applied to the preparation of 4-methoxy-1-methyl-2-pyridone, a valuable building block for heterocycle synthesis.
� 2005 Elsevier Ltd. All rights reserved.
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N-Alkylated 2-pyridones are important intermediates
in the synthesis of polycyclic compounds of biological
significance as illustrated by the recent synthetic
approaches toward the camptothecin family of anti-
tumor agents.1 They are also structural subunits of
naturally occurring products such as the heterocycle-
annelated pyridone alkaloid cerpegin having analgesic,
anti-ulcer, and anti-inflammatory activities2 or the anti-
biotic 4-hydroxypyridones funiculosine, which possesses
fungicide properties3 and aurodox, an antimicrobial
agent.4 However, there is still a need for efficient meth-
ods allowing the selective N-alkylation of 2-pyridones,
as known procedures generally suffer from low yields
and/or competition between N- and O-alkylation.5 In
the course of a program aimed at evaluating the syn-
thetic potential of N-alkylated-4-alkoxy-2-pyridones as
precursors of new drug-like heterocycles,6 we needed
to prepare a series of such compounds and were parti-
cularly interested in 4-methoxy-N-methyl-2-pyridone 1,
a known building block in heterocycle synthesis,3,6,7

and its phenylsulfonyl derivative 28 as model substrates.
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To the best of our knowledge, no satisfactory procedure
was available from the literature in terms of practicity
and low cost for the large scale preparation of 1. Alkyl-
ation of commercially available, but rather expensive,
4-hydroxy-2-pyridone (4) is rather difficult owing to its
low solubility in common organic solvents. Direct
bismethylation of 4 has been reported to proceed under
phase transfer conditions (H2O/benzene; 70 �C) using
dimethylsulfate in the presence of benzyl triethylammo-
nium bromide.3 However, the process is sluggish, low
yielding (50%), and isolation of the product rather
tedious.

In 1917, Winterstein et al.9 reported the isolation of
N,O-dimethylpyridone 1 obtained upon heating of the
alkaloid ricinin (3) in aq H2SO4. Ricinin was initially
obtained from castor seeds (Ricinus communis L.)10

but can now be prepared from malononitrile according
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Table 1. Selective N-alkylation of 4-alkoxy-2-pyridones
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 t-BuOK, cat. n-Bu4NI

R'

THF,  RT

10a R = Bn
10b R = Me

R'X

Entry Pyridone Alkyl halide Yield (%)a

1 10a MeI 91% (11a)
2 10a BnBr 93% (11b)
3 10a Br 90% (11c)

4 10a Br 83% (11d)

5 10a
Ph Ph

Br
62%b (11e)

6 10b MeI 91% (1)
7 10b BnBr 95% (11f)
8 10b n-BuI 94%c (11g)

a Yields refer to single runs. Reactions conducted overnight on a
half-millimolar scale. Ratio 10–R0X–t-BuOK–n-Bu4NI = 1:1.5:1.1:
0.05.

b 3 equiv of benzhydryl bromide were used (50 �C, 3 days).
c 3 equiv of butyl iodide were used.
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to a four-step procedure as reported by Junek and co-
workers.11 The most significant drawback of the method
was again the low yield obtained for the N-methylation
of the 3-cyanopyridone precursor 5 (Me2SO4, aq NaOH,
rt, 53% yield). As it was predicted that sulfonylpyridone
2 would be available from phenylsulfonylacetonitrile (6)
according to the same reaction sequence, and that pyri-
done 1 would then be accessible from desulfonylation of
2, avoiding the N-methylation in the last step, we
planned to exploit this approach as a common route
to both compounds (Scheme 1).

Thus, preparation of the cyclic precursor 9 was accom-
plished in three high yielding steps by using slight mod-
ifications of Junek�s procedure. Notably, in our modified
method, cyclization of the enamine precursor was con-
ducted in 80% aq acetic acid12 instead of concd sulfuric
acid. With pyridone 9 in hand, the next issue to address
was the alkylation step. As expected, the aforemen-
tioned procedures involving aqueous systems proved
unsatisfactory in terms of yields (<50%) and ease of
product purification. We then decided to seek new con-
ditions and were pleased to find that selective N-methyl-
ation of 9 could be accomplished under mild condi-
tions by using the anhydrous system MeI/t-BuOK/cat.
n-Bu4NI13 in THF at room temperature. The desired
sulfonyl derivative 2 was obtained in nearly quantitative
yield. It is of interest that the reaction sequence has been
successfully scaled up to produce 45 g of 2 in a single
batch.

Removal of the phenylsulfonyl group in 2 was then
investigated. A screening of desulfonylation conditions
suggested from the literature were tried (Na/Hg,
MeOH;14 Mg/HgCl2, EtOH;15 H2, Raney Ni, EtOH;16

Bu3SnH, AIBN, toluene;17 i-PrMgBr, Ni(acac)2,
THF;18 NaBH4, DMF19) all of which failed to give the
desired product in satisfactory yield, if any. Finally,
the procedure developed by Julia for the desulfonylation
of acyclic vinyl sulfones by sodium dithionite (Na2S2O4)
proved to be quite effective. In the original report,20 the
reductant was used in combination with NaHCO3 and
AdogenTM under phase transfer conditions (benzene–
water, 80 �C). However, optimization studies established
that desulfonylation of 2 proceeds faster and gives better
yields (up to 93%) by substituting AdogenTM for n-Bu4NI
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Scheme 1. Reagents and conditions: (i) neat MeC(OMe)3, D (–MeOH); (ii
(1.5 equiv), t-BuOK, cat. n-Bu4NI, THF, 0 �C to rt; (v) Na2S2O4, NaHCO3,
and by carrying out the reaction at 90 �C in aqueous
toluene.

Having succeeded in developing a practical, alternative
synthesis of pyridone 1,21 we then focused our attention
on the general applicability of the N-alkylation of pyri-
dones by mean of the t-BuOK/n-Bu4NI system. Quite
interestingly, methylation of cyanopyridone 5 under
the same conditions used previously for 9 was shown
to proceed smoothly to yield ricinin (3) in an improved
90% isolated yield compared to that reported by Junek
(53%). The alkylation protocol applied also to other
alkylating reagents as demonstrated by reaction of
4-alkoxypyridones 10a,b (Table 1)22 with methyl iodide,23

benzyl bromide, allyl bromide, propargyl bromide, as
well as the less activated n-butyl iodide. Even the sec-
ondary benzhydryl bromide24 participated in the process
but required higher temperature (50 �C) and prolonged
reaction times.25
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) neat Me2NCH(OMe)2, 140 �C; (iii) 80% aq AcOH reflux; (iv) MeI
n-Bu4NI, toluene–H2O, 90 �C.
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In conclusion, we have described an efficient protocol for
the selective N-alkylation of 4-alkoxy-2-pyridones,
which also holds promise for the alkylation of 2-pyri-
dones in general. We have also established an alternative,
practical procedure for the synthesis of 4-methoxy-1-
methyl-2-pyridone 1, a versatile building block in hetero-
cycle synthesis. The method is particularly well suited for
the preparation of 1 in multi-gram scale.
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